1
|
Rizzi G, Lee JR, Dahl C, Guldberg P, Dufva M, Wang SX, Hansen MF. Simultaneous Profiling of DNA Mutation and Methylation by Melting Analysis Using Magnetoresistive Biosensor Array. ACS NANO 2017; 11:8864-8870. [PMID: 28832112 PMCID: PMC5810360 DOI: 10.1021/acsnano.7b03053] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Epigenetic modifications, in particular DNA methylation, are gaining increasing interest as complementary information to DNA mutations for cancer diagnostics and prognostics. We introduce a method to simultaneously profile DNA mutation and methylation events for an array of sites with single site specificity. Genomic (mutation) or bisulphite-treated (methylation) DNA is amplified using nondiscriminatory primers, and the amplicons are then hybridized to a giant magnetoresistive (GMR) biosensor array followed by melting curve measurements. The GMR biosensor platform offers scalable multiplexed detection of DNA hybridization, which is insensitive to temperature variation. The melting curve approach further enhances the assay specificity and tolerance to variations in probe length. We demonstrate the utility of this method by simultaneously profiling five mutation and four methylation sites in human melanoma cell lines. The method correctly identified all mutation and methylation events and further provided quantitative assessment of methylation density validated by bisulphite pyrosequencing.
Collapse
Affiliation(s)
- Giovanni Rizzi
- Department of Micro- and Nanotechnology DTU Nanotech, Technical University of Denmark, Building 345B, Kongens Lyngby, DK 2800, Denmark
| | - Jung-Rok Lee
- Division of Mechanical and Biomedical Engineering, ELTEC College of Engineering, Ewha Womans University, Seoul 03760, South Korea
- Department of Materials Science and Engineering, Stanford University, Stanford, California 93405, United States
| | - Christina Dahl
- Danish Cancer Society Research Center, Copenhagen, DK 2100, Denmark
| | - Per Guldberg
- Danish Cancer Society Research Center, Copenhagen, DK 2100, Denmark
| | - Martin Dufva
- Department of Micro- and Nanotechnology DTU Nanotech, Technical University of Denmark, Building 345B, Kongens Lyngby, DK 2800, Denmark
| | - Shan X. Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, California 93405, United States
- Department of Electrical Engineering, Stanford University, Stanford, California 93405, United States
- Corresponding Authors:.
| | - Mikkel F. Hansen
- Department of Micro- and Nanotechnology DTU Nanotech, Technical University of Denmark, Building 345B, Kongens Lyngby, DK 2800, Denmark
- Corresponding Authors:.
| |
Collapse
|
2
|
Rizzi G, Dufva M, Hansen MF. Two-dimensional salt and temperature DNA denaturation analysis using a magnetoresistive sensor. LAB ON A CHIP 2017; 17:2256-2263. [PMID: 28593203 DOI: 10.1039/c7lc00485k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present a microfluidic system and its use to measure DNA denaturation curves by varying the temperature or salt (Na+) concentration. The readout is based on real-time measurements of DNA hybridization using magnetoresistive sensors and magnetic nanoparticles (MNPs) as labels. We report the first melting curves of DNA hybrids measured as a function of continuously decreasing salt concentration at fixed temperature and compare them to the corresponding curves obtained vs. temperature at fixed salt concentration. The magnetoresistive sensor platform provided reliable results under varying temperature as well as salt concentration. The salt concentration melting curves were found to be more reliable than temperature melting curves. We performed a two-dimensional mapping of the melting profiles of a target to probes targeting its wild type (WT) and mutant type (MT) variants in the temperature-salt concentration plane. This map clearly showed a region of optimum ability to differentiate between the two variants. We finally demonstrated single nucleotide polymorphysm (SNP) genotyping using both denaturation methods on both separate sensors but also using a differential measurement on a single sensor. The results demonstrate that concentration melting provides an attractive alternative to temperature melting in on-chip DNA denaturation experiments and further show that the magnetoresistive platform is attractive due to its low cross-sensitivity to temperature and liquid composition.
Collapse
Affiliation(s)
- Giovanni Rizzi
- Department of Micro- and Nanotechnology, DTU Nanotech, Building 345B, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| | | | | |
Collapse
|
3
|
Egatz-Gomez A, Wang C, Klacsmann F, Pan Z, Marczak S, Wang Y, Sun G, Senapati S, Chang HC. Future microfluidic and nanofluidic modular platforms for nucleic acid liquid biopsy in precision medicine. BIOMICROFLUIDICS 2016; 10:032902. [PMID: 27190565 PMCID: PMC4859827 DOI: 10.1063/1.4948525] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/20/2016] [Indexed: 05/05/2023]
Abstract
Nucleic acid biomarkers have enormous potential in non-invasive diagnostics and disease management. In medical research and in the near future in the clinics, there is a great demand for accurate miRNA, mRNA, and ctDNA identification and profiling. They may lead to screening of early stage cancer that is not detectable by tissue biopsy or imaging. Moreover, because their cost is low and they are non-invasive, they can become a regular screening test during annual checkups or allow a dynamic treatment program that adjusts its drug and dosage frequently. We briefly review a few existing viral and endogenous RNA assays that have been approved by the Federal Drug Administration. These tests are based on the main nucleic acid detection technologies, namely, quantitative reverse transcription polymerase chain reaction (PCR), microarrays, and next-generation sequencing. Several of the challenges that these three technologies still face regarding the quantitative measurement of a panel of nucleic acids are outlined. Finally, we review a cluster of microfluidic technologies from our group with potential for point-of-care nucleic acid quantification without nucleic acid amplification, designed to overcome specific limitations of current technologies. We suggest that integration of these technologies in a modular design can offer a low-cost, robust, and yet sensitive/selective platform for a variety of precision medicine applications.
Collapse
Affiliation(s)
- Ana Egatz-Gomez
- Center for Microfluidics and Medical Diagnostics, Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, USA
| | - Ceming Wang
- Center for Microfluidics and Medical Diagnostics, Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, USA
| | - Flora Klacsmann
- Center for Microfluidics and Medical Diagnostics, Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, USA
| | - Zehao Pan
- Center for Microfluidics and Medical Diagnostics, Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, USA
| | - Steve Marczak
- Center for Microfluidics and Medical Diagnostics, Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, USA
| | - Yunshan Wang
- Electrical and Computer Engineering, University of Utah , Salt Lake City, Utah 84112, USA
| | - Gongchen Sun
- Center for Microfluidics and Medical Diagnostics, Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, USA
| | - Satyajyoti Senapati
- Center for Microfluidics and Medical Diagnostics, Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, USA
| | - Hsueh-Chia Chang
- Center for Microfluidics and Medical Diagnostics, Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, USA
| |
Collapse
|
4
|
A portable device for on site detection of chicken ovalbumin in artworks by chemiluminescent immunochemical contact imaging. Microchem J 2016. [DOI: 10.1016/j.microc.2015.08.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Shi H, Yang F, Li W, Zhao W, Nie K, Dong B, Liu Z. A review: fabrications, detections and applications of peptide nucleic acids (PNAs) microarray. Biosens Bioelectron 2014; 66:481-9. [PMID: 25499661 DOI: 10.1016/j.bios.2014.12.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/25/2014] [Accepted: 12/02/2014] [Indexed: 01/24/2023]
Abstract
Peptide nucleic acid (PNA) is a mimic of DNA that shows a high chemical stability and can survive the enzymatic degradation of nucleases and proteases. The superior binding properties of PNA enable the formation of PNA/DNA or PNA/RNA duplex with excellent thermal stability and unique ionic strength effect. The introduction of microarray makes it possible to achieve accurate, high throughput parallel analysis of DNA or RNA with a highly integrated and low reagents consuming device. This powerful tool expands the applications of PNA in genotyping based on single nucleotide polymorphism (SNP) detection, the monitoring of disease-related miRNA expression and pathogen detection. This review paper discusses the fabrications of PNA microarrays through in situ synthesis strategy or spotting method by automatic devices, the various detection methods for the microarray-based hybridization and the current applications of PNA microarrays.
Collapse
Affiliation(s)
- Huanhuan Shi
- Institute of Biomedical Engineering, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
| | - Feipeng Yang
- Institute of Biomedical Engineering, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
| | - Wenjia Li
- Institute of Biomedical Engineering, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
| | - Weiwei Zhao
- Institute of Biomedical Engineering, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
| | - Kaixuan Nie
- Institute of Biomedical Engineering, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
| | - Bo Dong
- Institute of Biomedical Engineering, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
| | - Zhengchun Liu
- Institute of Biomedical Engineering, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China.
| |
Collapse
|
6
|
A resonance light scattering sensor based on methylene blue–sodium dodecyl benzene sulfonate for ultrasensitive detection of guanine base associated mutations. Anal Bioanal Chem 2012; 404:1673-9. [DOI: 10.1007/s00216-012-6289-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/09/2012] [Accepted: 07/20/2012] [Indexed: 10/28/2022]
|
7
|
Klopfleisch R, Gruber AD. Transcriptome and proteome research in veterinary science: what is possible and what questions can be asked? ScientificWorldJournal 2012; 2012:254962. [PMID: 22262952 PMCID: PMC3259802 DOI: 10.1100/2012/254962] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 11/02/2011] [Indexed: 01/21/2023] Open
Abstract
In recent years several technologies for the complete analysis of the transcriptome and proteome have reached a technological level which allows their routine application as scientific tools. The principle of these methods is the identification and quantification of up to ten thousands of RNA and proteins species in a tissue, in contrast to the sequential analysis of conventional methods such as PCR and Western blotting. Due to their technical progress transcriptome and proteome analyses are becoming increasingly relevant in all fields of biological research. They are mainly used for the explorative identification of disease associated complex gene expression patterns and thereby set the stage for hypothesis-driven studies. This review gives an overview on the methods currently available for transcriptome analysis, that is, microarrays, Ref-Seq, quantitative PCR arrays and discusses their potentials and limitations. Second, the most powerful current approaches to proteome analysis are introduced, that is, 2D-gel electrophoresis, shotgun proteomics, MudPIT and the diverse technological concepts are reviewed. Finally, experimental strategies for biomarker discovery, experimental settings for the identification of prognostic gene sets and explorative versus hypothesis driven approaches for the elucidation of diseases associated genes and molecular pathways are described and their potential for studies in veterinary research is highlighted.
Collapse
Affiliation(s)
- Robert Klopfleisch
- Institut für Tierpathologie, Universität Berlin, Robert-von-Ostertag-Strasse 15, 14163 Berlin, Germany.
| | | |
Collapse
|
8
|
Iwai K, Tan WH, Ishihara H, Takeuchi S. A resettable dynamic microarray device. Biomed Microdevices 2011; 13:1089-94. [DOI: 10.1007/s10544-011-9578-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Microfluidic DNA microarray analysis: a review. Anal Chim Acta 2010; 687:12-27. [PMID: 21241842 DOI: 10.1016/j.aca.2010.11.056] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 11/29/2010] [Accepted: 11/30/2010] [Indexed: 11/21/2022]
Abstract
Microarray DNA hybridization techniques have been used widely from basic to applied molecular biology research. Generally, in a DNA microarray, different probe DNA molecules are immobilized on a solid support in groups and form an array of microspots. Then, hybridization to the microarray can be performed by applying sample DNA solutions in either the bulk or the microfluidic manner. Because the immobilized probe DNA binds and retains its complementary target DNA, detection is achieved through the read-out of the tagged markers on the sample target molecules. The recent microfluidic hybridization method shows the advantages of less sample usage and reduced incubation time. Here, sample solutions are confined in microfabricated channels and flow through the probe microarray area. The high surface-to-volume ratio in microchannels of nanolitre volume greatly enhanced the sensitivity as obtained with the bulk solution method. To generate nanolitre flows, different techniques have been developed, and this including electrokinetic control, vacuum suction and syringe pumping. The latter two are pressure-driven methods which are more flexible without the need of considering the physicochemical properties of solutions. Recently, centrifugal force is employed to drive liquid movement in microchannels. This method utilizes the body force from the liquid itself and there are no additional solution interface contacts such as from electrodes or syringes and tubing. Centrifugal force driven flow also features the ease of parallel hybridizations. In this review, we will summarize the recent advances in microfluidic microarray hybridization and compare the applications of various flow methods.
Collapse
|
10
|
Microfluidic DNA microarrays in PMMA chips: streamlined fabrication via simultaneous DNA immobilization and bonding activation by brief UV exposure. Biomed Microdevices 2010; 12:673-81. [PMID: 20336488 DOI: 10.1007/s10544-010-9420-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This report presents and describes a simple and scalable method for producing functional DNA microarrays within enclosed polymeric, PMMA, microfluidic devices. Brief (30 s) exposure to UV simultaneously immobilized poly(T)poly(C)-tagged DNA probes to the surface of unmodified PMMA and activated the surface for bonding below the glass transition temperature of the bulk PMMA. Functionality and validation of the enclosed PMMA microarrays was demonstrated as 18 patients were correctly genotyped for all eight mutation sites in the HBB gene interrogated. The fabrication process therefore produced probes with desired hybridization properties and sufficient bonding between PMMA layers to allow construction of microfluidic devices. The streamlined fabrication method is suited to the production of low-cost microfluidic microarray-based diagnostic devices and, as such, is equally applicable to the development of diagnostics for both resource rich and resource limited settings.
Collapse
|
11
|
Shen F, Du W, Davydova EK, Karymov MA, Pandey J, Ismagilov RF. Nanoliter multiplex PCR arrays on a SlipChip. Anal Chem 2010; 82:4606-12. [PMID: 20446698 DOI: 10.1021/ac1007249] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The SlipChip platform was tested to perform high-throughput nanoliter multiplex PCR. The advantages of using the SlipChip platform for multiplex PCR include the ability to preload arrays of dry primers, instrument-free sample manipulation, small sample volume, and high-throughput capacity. The SlipChip was designed to preload one primer pair per reaction compartment and to screen up to 384 different primer pairs with less than 30 nanoliters of sample per reaction compartment. Both a 40-well and a 384-well design of the SlipChip were tested for multiplex PCR. In the geometries used here, the sample fluid was spontaneously compartmentalized into discrete volumes even before slipping of the two plates of the SlipChip, but slipping introduced additional capabilities that made devices more robust and versatile. The wells of this SlipChip were designed to overcome potential problems associated with thermal expansion. By using circular wells filled with oil and overlapping them with square wells filled with the aqueous PCR mixture, a droplet of aqueous PCR mixture was always surrounded by the lubricating fluid. In this design, during heating and thermal expansion, only oil was expelled from the compartment and leaking of the aqueous solution was prevented. Both 40-well and 384-well devices were found to be free from cross-contamination, and end point fluorescence detection provided reliable readout. Multiple samples could also be screened on the same SlipChip simultaneously. Multiplex PCR was validated on the 384-well SlipChip with 20 different primer pairs to identify 16 bacterial and fungal species commonly presented in blood infections. The SlipChip correctly identified five different bacterial or fungal species in separate experiments. In addition, the presence of the resistance gene mecA in methicillin resistant Staphylococcus aureus (MRSA) was identified. The SlipChip will be useful for applications involving PCR arrays and lays the foundation for new strategies for diagnostics, point-of-care devices, and immobilization-based arrays.
Collapse
Affiliation(s)
- Feng Shen
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|