1
|
Xiong Q, Liang W, Shang W, Xie Z, Cheng J, Yu B, Fang Y, Sun L, Zhao J. Bidirectional Uptake, Transfer, and Transport of Dextran-Based Nanoparticles in Plants for Multidimensional Enhancement of Pesticide Utilization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305693. [PMID: 37828638 DOI: 10.1002/smll.202305693] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/13/2023] [Indexed: 10/14/2023]
Abstract
The development of effective multifunctional nano-delivery approaches for pesticide absorption remains a challenge. Here, a dextran-based pesticide delivery system (MBD) is constructed to deliver tebuconazole for multidimensionally enhancing its effective utilization on tomato plants. Spherical MBD nanoparticles are obtained through two-step esterification of dextran, followed by tebuconazole loading using the Michael addition reaction. Confocal laser scanning microscopy shows that fluorescein isothiocyanate-labeled MBD nanoparticles can be bidirectionally transported in tomato plants and a modified quick, easy, cheap, effective, rugged, and safe-HPLC approach demonstrates the capacity to carry tebuconazole to plant tissues after 24 h of root uptake and foliar spray, respectively. Additionally, MBD nanoparticles could increase the retention of tebuconazole on tomato leaves by up to nearly 2.1 times compared with the tebuconazole technical material by measuring the tebuconazole content retained on the leaves. In vitro antifungal and pot experiments show that MBD nanoparticles improve the inhibitory effect of tebuconazole against botrytis cinerea by 58.4% and the protection against tomato gray molds by 74.9% compared with commercial suspensions. Furthermore, the MBD nanoparticles do not affect the healthy growth of tomato plants. These results underline the potential for the delivery system to provide a strategy for multidimensional enhancement of pesticide efficacy.
Collapse
Affiliation(s)
- Qiuyu Xiong
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Wenlong Liang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Wenxuan Shang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Zhengang Xie
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jingli Cheng
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Bin Yu
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yun Fang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Li Sun
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, P. R. China
| | - Jinhao Zhao
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
2
|
Bostanudin MF, Muhamad Noor NS, Sahudin S, Mat Lazim A, Tan SF, Sarker MZI. Investigations of amphiphilic butylglyceryl‐functionalized dextran nanoparticles for topical delivery. J Appl Polym Sci 2020. [DOI: 10.1002/app.50235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Shariza Sahudin
- Department of Pharmaceutics, Faculty of Pharmacy Universiti Teknologi Mara Puncak Alam Campus Shah Alam Selangor Malaysia
| | - Azwan Mat Lazim
- School of Chemical Sciences & Food Technology, Faculty of Science & Technology Universiti Kebangsaan Malaysia Bangi Selangor Malaysia
| | - Suk Fei Tan
- School of Pharmacy Management and Science University Seksyen 13 Shah Alam Selangor Malaysia
| | - Md Zaidul I. Sarker
- Faculty of Pharmacy International Islamic University Malaysia Kuantan Campus Kuantan Pahang Malaysia
| |
Collapse
|
3
|
Ibegbu DM, Boussahel A, Cragg SM, Tsibouklis J, Barbu E. Nanoparticles of alkylglyceryl dextran and poly(ethyl cyanoacrylate) for applications in drug delivery: Preparation and characterization. INT J POLYM MATER PO 2016. [DOI: 10.1080/00914037.2016.1201827] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Daniel M. Ibegbu
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael’s Building, Portsmouth, United Kingdom
- Department of Medical Biochemistry, University of Nigeria Enugu Campus (UNEC), Enugu, Nigeria
| | - Asme Boussahel
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael’s Building, Portsmouth, United Kingdom
| | - Simon M. Cragg
- Institute of Marine Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - John Tsibouklis
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael’s Building, Portsmouth, United Kingdom
| | - Eugen Barbu
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael’s Building, Portsmouth, United Kingdom
| |
Collapse
|
4
|
Toman P, Lien CF, Ahmad Z, Dietrich S, Smith JR, An Q, Molnár É, Pilkington GJ, Górecki DC, Tsibouklis J, Barbu E. Nanoparticles of alkylglyceryl-dextran-graft-poly(lactic acid) for drug delivery to the brain: Preparation and in vitro investigation. Acta Biomater 2015; 23:250-262. [PMID: 25983313 DOI: 10.1016/j.actbio.2015.05.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 04/20/2015] [Accepted: 05/08/2015] [Indexed: 10/23/2022]
Abstract
Poly(lactic acid), which has an inherent tendency to form colloidal systems of low polydispersity, and alkylglyceryl-modified dextran - a material designed to combine the non-immunogenic and stabilising properties of dextran with the demonstrated permeation enhancing ability of alkylglycerols - have been combined for the development of nanoparticulate, blood-brain barrier-permeating, non-viral vectors. To this end, dextran, that had been functionalised via treatment with epoxide precursors of alkylglycerol, was covalently linked to poly(lactic acid) using a carbodiimide cross-linker to form alkylglyceryl-modified dextran-graft-poly(lactic acid). Solvent displacement and electrospray methods allowed the formulation of these materials into nanoparticles having a unimodal size distribution profile of about 100-200nm and good stability at physiologically relevant pH (7.4). The nanoparticles were characterised in terms of hydrodynamic size (by Dynamic Light Scattering and Nanoparticle Tracking Analysis), morphology (by Scanning Electron Microscopy and Atomic Force Microscopy) and zeta potential, and their toxicity was evaluated using MTT and PrestoBlue assays. Cellular uptake was evidenced by confocal microscopy employing nanoparticles that had been loaded with the easy-to-detect Rhodamine B fluorescent marker. Transwell-model experiments employing mouse (bEnd3) and human (hCMEC/D3) brain endothelial cells revealed enhanced permeation (statistically significant for hCMEC/D3) of the fluorescent markers in the presence of the nanoparticles. Results of studies using Electric Cell Substrate Impedance Sensing suggested a transient decrease of the barrier function in an in vitro blood-brain barrier model following incubation with these nanoformulations. An in ovo study using 3-day chicken embryos indicated the absence of whole-organism acute toxicity effects. The collective in vitro data suggest that these alkylglyceryl-modified dextran-graft-poly(lactic acid) nanoparticles are promising candidates for in vivo evaluations that would test their capability to transport therapeutic actives to the brain.
Collapse
|
5
|
Inutsuka M, Inoue K, Hayashi Y, Inomata A, Sakai Y, Yokoyama H, Ito K. Highly dielectric and flexible polyrotaxane elastomer by introduction of cyano groups. POLYMER 2015. [DOI: 10.1016/j.polymer.2014.12.055] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Zhang Y, Li J, Lindström ME, Mischnick P. Relative reactivities in the O-methylation of glucomannans: the influence of stereochemistry at C-2 and the solvent effect. Carbohydr Res 2015; 402:172-9. [DOI: 10.1016/j.carres.2014.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/27/2014] [Accepted: 06/06/2014] [Indexed: 11/28/2022]
|
7
|
Aschenbrenner E, Bley K, Koynov K, Makowski M, Kappl M, Landfester K, Weiss CK. Using the polymeric ouzo effect for the preparation of polysaccharide-based nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:8845-8855. [PMID: 23777243 DOI: 10.1021/la4017867] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The polymeric ouzo effect, a nanoprecipitation process, is used for the preparation of polysaccharide-based nanoparticles. Dextran, pullulan, and starch were esterified with hydrophobic carboxylic acid anhydrides to obtain hydrophobic polysaccharides, which are insoluble in water. The additional introduction of methacroyl residues offers the possibility to cross-link the generated nanostructures, which become insoluble in organic solvents. To make use of the ouzo effect for the formation of nanoparticles, the polymer has to be soluble in an organic solvent, which is miscible with water. Here, acetone and THF were used. Immediately after the organic polymer solution is added to water, nanoparticles are generated. The size of the nanoparticles can be adjusted between 50 and 200 nm by changing the concentration of the initial polysaccharide solution. The degree of hydrophobic substitution was shown to have a very minor effect on the particle size. Dispersions with solids contents of up to 2% were obtained. Furthermore, the mechanical properties of the nanoparticles were investigated with force microscopy, and it was shown by fluorescence correlation spectroscopy that a fluorescent dye could be encapsulated in the nanoparticles by the applied nanoprecipitation procedure.
Collapse
|
8
|
Rühmkorf C, Rübsam H, Becker T, Bork C, Voiges K, Mischnick P, Brandt MJ, Vogel RF. Effect of structurally different microbial homoexopolysaccharides on the quality of gluten-free bread. Eur Food Res Technol 2012. [DOI: 10.1007/s00217-012-1746-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Fiege K, Lünsdorf H, Atarijabarzadeh S, Mischnick P. Cyanoethylation of the glucans dextran and pullulan: Substitution pattern and formation of nanostructures and entrapment of magnetic nanoparticles. Beilstein J Org Chem 2012; 8:551-66. [PMID: 22563354 PMCID: PMC3343282 DOI: 10.3762/bjoc.8.63] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/23/2012] [Indexed: 02/04/2023] Open
Abstract
Cyanoethylglucans with a degree of substitution in the range of 0.74 to 2.40 for dextran and 0.84 to 2.42 for pullulan were obtained by Michael addition of acrylonitrile to the glucans under various conditions. Products were thoroughly characterized, comprising elementary analysis, NMR and ATR-IR spectroscopy, and analysis of the substituent distribution in the glucosyl units by GC-FID and GC-MS of the constituting monosaccharide derivatives. Nanostructuring of the highly substituted cyanoethylpolysaccharides was performed by dialysis against a non-solvent. In the presence of ferromagnetic iron-oxide nanoparticles, multicore cyanoethylglucan-coated ferromagnetic nanoparticles were formed by selective entrapment. The specific interaction between cyano groups and iron could be proven. The size distribution and morphology of the nanoparticles were analyzed by dynamic light scattering (DLS), scanning electron microscopy (SEM) and energy-filtered transmission electron microscopy (EF-TEM) with parallel electron energy loss spectroscopy (PEELS).
Collapse
Affiliation(s)
- Kathrin Fiege
- Institute for Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, D-38106 Braunschweig, Germany
| | - Heinrich Lünsdorf
- Department of Vaccinology and Applied Microbiology, EM-Unit, Helmholtz Centre for Infection Research, Inhoffenstraße 7, D-38124 Braunschweig, Germany
| | - Sevil Atarijabarzadeh
- Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-10044 Stockholm, Sweden
| | - Petra Mischnick
- Institute for Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, D-38106 Braunschweig, Germany
- Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-10044 Stockholm, Sweden
| |
Collapse
|
10
|
|
11
|
Unterieser I, Cuers J, Voiges K, Enebro J, Mischnick P. Quantitative aspects in electrospray ionization ion trap and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of malto-oligosaccharides. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:2201-2208. [PMID: 21710600 DOI: 10.1002/rcm.5105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Mass spectrometry is widely applied in carbohydrate analysis, but still quantitative evaluation of data is critical due to different ionization efficiencies of the constituents in a mixture. Different size and chemical structure of the analytes cause their uneven distribution in droplets (electrospray ionization, ESI) or matrix spots (matrix-assisted laser desorption/ionization, MALDI). In addition, instrumental parameters affect final ion yields. In order to study and optimize the latter, an equimolar mixture of malto-oligosaccharides (DP1-6) was analyzed using varying target masses for ESI as well as different matrices and laser power for MALDI. The sodium adducts and derivatives for positive ion mode (hydrazones with Girard's T Reagent, GT) and negative ion mode (reductively aminated with o-aminobenzoic acid, oABA) were studied. Negatively charged oABA-labeled malto-oligosaccharides turned out to be unsuitable for quantification of the malto-oligomeric composition. Best agreement was achieved when applying target masses in the range of the highest homolog in the mixture in electrospray ionization ion trap (ESI-IT) (1-2% deviation with GT label or as Na(+) adducts). Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) gave best results when the laser power was adjusted significantly over the desorption/ionization threshold (1% deviation with GT label). Both parameters show significant influence on the determined oligomeric composition. Consequently, estimation and even quantitative determination of amounts of oligosaccharides in a mixture can be achieved when the analytes are labeled and the proper instrumental parameters are used.
Collapse
Affiliation(s)
- Inga Unterieser
- Technische Universität Braunschweig, Institut für Lebensmittelchemie, Schleinitzstr. 20, D-38106 Braunschweig, Germany
| | | | | | | | | |
Collapse
|
12
|
Fox SC, Li B, Xu D, Edgar KJ. Regioselective esterification and etherification of cellulose: a review. Biomacromolecules 2011; 12:1956-72. [PMID: 21524055 DOI: 10.1021/bm200260d] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Deep understanding of the structure-property relationships of polysaccharide derivatives depends on the ability to control the position of the substituents around the monosaccharide ring and along the chain. Equally important is the ability to analyze position of substitution. Historically, both synthetic control and analysis of regiochemistry have been very difficult for cellulose derivatives, as for most other polysaccharide derivatives. With the advent of cellulose solvents that are suitable for chemical transformations, it has become possible to carry out cellulose derivatization under conditions sufficiently mild to permit increasingly complete regiochemical control, particularly with regard to the position of the substituents around the anhydroglucose ring. In addition, new techniques for forming cellulose and its derivatives from monomers, either by enzyme-catalyzed processes or chemical polymerization, permit us to address new frontiers in regiochemical control. We review these exciting developments in regiocontrolled synthesis of cellulose derivatives and their implications for in-depth structure-property studies.
Collapse
Affiliation(s)
- S Carter Fox
- Macromolecules and Interfaces Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | | | |
Collapse
|
13
|
Mass Spectrometric Characterization of Oligo- and Polysaccharides and Their Derivatives. MASS SPECTROMETRY OF POLYMERS – NEW TECHNIQUES 2011. [DOI: 10.1007/12_2011_134] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
14
|
Tahir MN, Bork C, Risberg A, Horst JC, Komoß C, Vollmer A, Mischnick P. Alkynyl Ethers of Glucans: Substituent Distribution in Propargyl-, Pentynyl- and Hexynyldextrans and -amyloses and Support for Silver Nanoparticle Formation. MACROMOL CHEM PHYS 2010. [DOI: 10.1002/macp.200900700] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|