1
|
Kamal Hossain M. Nanoscale Imaging of Interstitial-dependent Optical Confinement through Near-Field Scanning Optical Microscopy. CHEM REC 2022; 22:e202200108. [PMID: 35585028 DOI: 10.1002/tcr.202200108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Indexed: 11/08/2022]
Abstract
Exploitation of optical confinement in nanoscale unveils a wealth of information about the structure, optical, electronic, and chemical properties of the materials. However, realizing such confinement by optical microscopy and spectroscopic techniques have remained challenging due to fundamental formulation that is related to the diffraction theory of light. A state-of-art technique, known as near-field scanning optical microscopy (NSOM) has the ability to break such diffraction limitation, as the spatial resolution depends on the near-field probe diameter and the distance between the probe and the surface. A home-built apertured NSOM (a-NSOM) developed in the beginning of NSOM discovery facilitated to investigate N-particles nano-assemblies, where N is two or more. Through surface-sensitive spectroscopy such as surface-enhanced Raman scattering (SERS) and surface-enhanced two-photon-induced photoluminescence (TPI-PL), a correlated optometrology was revealed by taking snapshots of shear-force topography, SERS and TPI-PL simultaneously in single-channel and multi-channel detection system. Here in this "Personal Account" we have decorated near-field optical confinement observed by a-NSOM in three constructs; archetype dimer, nano-assembly of few nanoparticles and long-range two-dimensional (2D) nano-assembly. In the case of dimer, optical confinement was localized and interstitial-dependent whereas coalescence of nearby confinements was reported in few particles nanoaggregate. In the case of 2D nano-assembly, optical confinements were more complex because a nanoparticle was surrounded by six or more adjacent nanoparticles. FDTD simulation were carried out to support and validate the experimental observations. Such observations in nanoscale taking snapshots of nanometric topography and surface-sensitive spectroscopic signal not only inspire us to understand optical confinements in near-field, but also implement the concept in designing miniaturized and efficient system.
Collapse
Affiliation(s)
- Mohammad Kamal Hossain
- Interdisciplinary Research Center for Renewable Energy and Power systems (IRC-REPS), Research Institute, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| |
Collapse
|
2
|
Wen Y, Yu H, Zhao W, Li P, Wang F, Ge Z, Wang X, Liu L, Li WJ. Scanning Super-Resolution Imaging in Enclosed Environment by Laser Tweezer Controlled Superlens. Biophys J 2020; 119:2451-2460. [PMID: 33189683 DOI: 10.1016/j.bpj.2020.10.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 10/23/2022] Open
Abstract
Super-resolution imaging using microspheres has attracted tremendous scientific attention recently because it has managed to overcome the diffraction limit and allowed direct optical imaging of structures below 100 nm without the aid of fluorescent microscopy. To allow imaging of specific areas on the surface of samples, the migration of the microspheres to specific locations on two-dimensional planes should be controlled to be as precise as possible. The common approach involves the attachment of microspheres on the tip of a probe. However, this technology requires additional space for the probe and could not work in an enclosed environment, e.g., in a microfluidic enclosure, thereby reducing the range of potential applications for microlens-based super-resolution imaging. Herein, we explore the use of laser trapping to manipulate microspheres to achieve super-resolution imaging in an enclosed microfluidic environment. We have demonstrated that polystyrene microsphere lenses could be manipulated to move along designated routes to image features that are smaller than the optical diffraction limit. For example, a silver nanowire with a diameter of 90 nm could be identified and imaged. In addition, a mosaic image could be constructed by fusing a sequence of images of a sample in an enclosed environment. Moreover, we have shown that it is possible to image Escherichia coli bacteria attached on the surface of an enclosed microfluidic device with this method. This technology is expected to provide additional super-resolution imaging opportunities in enclosed environments, including microfluidic, lab-on-a-chip, and organ-on-a-chip devices.
Collapse
Affiliation(s)
- Yangdong Wen
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Shenyang, China; Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Haibo Yu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Shenyang, China; Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China.
| | - Wenxiu Zhao
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Shenyang, China; Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Pan Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Shenyang, China; Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Feifei Wang
- Department of Chemistry, Stanford University, Stanford, California
| | - Zhixing Ge
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Shenyang, China; Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Xiaoduo Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Shenyang, China; Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Shenyang, China; Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
| | - Wen Jung Li
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
3
|
Dunn RC. Scanning resonator microscopy integrating phase sensitive detection. APPLIED OPTICS 2017; 56:9716-9723. [PMID: 29240117 DOI: 10.1364/ao.56.009716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/10/2017] [Indexed: 06/07/2023]
Abstract
Scanning resonator microscopy (SRM) is a scanning probe technique that uses a small, optical resonator attached to the end of a conventional atomic force microscopy cantilever to simultaneously measure optical and topography properties of sample surfaces. In SRM, whispering gallery mode (WGM) resonances excited in the attached optical resonator shift in response to changes in surface refractive index (RI), providing a mechanism for mapping RI with high spatial resolution. In our initial report, the SRM tip was excited with a fixed excitation wavelength during sample scanning, which limits the approach. An improved method based on a wavelength modulation coupled with phase sensitive detection is reported here. This results in real-time characterization of WGM spectral shifts while eliminating complications arising from measurements based solely on signal intensity. This improved approach, combined with a modified tip design enabling integration of smaller resonators, is shown to enhance signal-to-noise and lead to sub-100 nm spatial resolution in the SRM optical image. The improved capabilities are demonstrated through measurements on thin dielectric and polymer films.
Collapse
|
4
|
Applications of Brewster angle microscopy from biological materials to biological systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1749-1766. [PMID: 28655618 DOI: 10.1016/j.bbamem.2017.06.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 12/22/2022]
Abstract
Brewster angle microscopy (BAM) is a powerful technique that allows for real-time visualization of Langmuir monolayers. The lateral organization of these films can be investigated, including phase separation and the formation of domains, which may be of different sizes and shapes depending on the properties of the monolayer. Different molecules or small changes within a molecule such as the molecule's length or presence of a double bond can alter the monolayer's lateral organization that is usually undetected using surface pressure-area isotherms. The effect of such changes can be clearly observed using BAM in real-time, under full hydration, which is an experimental advantage in many cases. While previous BAM reviews focused more on selected compounds or compared the impact of structural variations on the lateral domain formation, this review provided a broader overview of BAM application using biological materials and systems including the visualization of amphiphilic molecules, proteins, drugs, extracts, DNA, and nanoparticles at the air-water interface.
Collapse
|
5
|
Bulat K, Rygula A, Szafraniec E, Ozaki Y, Baranska M. Live endothelial cells imaged by Scanning Near-field Optical Microscopy (SNOM): capabilities and challenges. JOURNAL OF BIOPHOTONICS 2017; 10:928-938. [PMID: 27545579 DOI: 10.1002/jbio.201600081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 07/23/2016] [Accepted: 08/05/2016] [Indexed: 06/06/2023]
Abstract
The scanning near-field optical microscopy (SNOM) shows a potential to study details of biological samples, since it provides the optical images of objects with nanometric spatial resolution (50-200 nm) and the topographic information at the same time. The goal of this work is to demonstrate the capabilities of SNOM in transmission configuration to study human endothelial cells and their morphological changes, sometimes very subtle, upon inflammation. Various sample preparations were tested for SNOM measurements and promising results are collected to show: 1) the influence of α tumor necrosis factor (TNF-α) on EA.hy 926 cells (measurements of the fixed cells); 2) high resolution images of various endothelial cell lines, i.e. EA.hy 926 and HLMVEC (investigations of the fixed cells in buffer environment); 3) imaging of live endothelial cells in physiological buffers. The study demonstrate complementarity of the SNOM measurements performed in air and in liquid environments, on fixed as well as on living cells. Furthermore, it is proved that the SNOM is a very useful method for analysis of cellular morphology and topography. Changes in the cell shape and nucleus size, which are the symptoms of inflammatory reaction, were noticed in TNF-α activated EA.hy 926 cells. The cellular structures of submicron size were observed in high resolution optical images of cells from EA.hy 926 and HLMVEC lines.
Collapse
Affiliation(s)
- Katarzyna Bulat
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, Krakow, Poland
- Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, Kraków, Poland
| | - Anna Rygula
- Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, Kraków, Poland
| | - Ewelina Szafraniec
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, Krakow, Poland
| | - Yukihiro Ozaki
- Kwasei Gakuin University, 2-1 Gakuen, Sanda, Hyougo, 669-1337, Japan
| | - Malgorzata Baranska
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, Krakow, Poland
- Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, Kraków, Poland
| |
Collapse
|
6
|
Carquin M, D'Auria L, Pollet H, Bongarzone ER, Tyteca D. Recent progress on lipid lateral heterogeneity in plasma membranes: From rafts to submicrometric domains. Prog Lipid Res 2015; 62:1-24. [PMID: 26738447 DOI: 10.1016/j.plipres.2015.12.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/22/2015] [Accepted: 12/22/2015] [Indexed: 12/29/2022]
Abstract
The concept of transient nanometric domains known as lipid rafts has brought interest to reassess the validity of the Singer-Nicolson model of a fluid bilayer for cell membranes. However, this new view is still insufficient to explain the cellular control of surface lipid diversity or membrane deformability. During the past decades, the hypothesis that some lipids form large (submicrometric/mesoscale vs nanometric rafts) and stable (>min vs s) membrane domains has emerged, largely based on indirect methods. Morphological evidence for stable submicrometric lipid domains, well-accepted for artificial and highly specialized biological membranes, was further reported for a variety of living cells from prokaryot es to yeast and mammalian cells. However, results remained questioned based on limitations of available fluorescent tools, use of poor lipid fixatives, and imaging artifacts due to non-resolved membrane projections. In this review, we will discuss recent evidence generated using powerful and innovative approaches such as lipid-specific toxin fragments that support the existence of submicrometric domains. We will integrate documented mechanisms involved in the formation and maintenance of these domains, and provide a perspective on their relevance on membrane deformability and regulation of membrane protein distribution.
Collapse
Affiliation(s)
- Mélanie Carquin
- CELL Unit, de Duve Institute & Université Catholique de Louvain, UCL B1.75.05, Avenue Hippocrate, 75, B-1200 Brussels, Belgium
| | - Ludovic D'Auria
- The Myelin Regeneration Group at the Dept. Anatomy & Cell Biology, College of Medicine, University of Illinois, 808 S. Wood St. MC512, Chicago, IL. 60612. USA
| | - Hélène Pollet
- CELL Unit, de Duve Institute & Université Catholique de Louvain, UCL B1.75.05, Avenue Hippocrate, 75, B-1200 Brussels, Belgium
| | - Ernesto R Bongarzone
- The Myelin Regeneration Group at the Dept. Anatomy & Cell Biology, College of Medicine, University of Illinois, 808 S. Wood St. MC512, Chicago, IL. 60612. USA
| | - Donatienne Tyteca
- CELL Unit, de Duve Institute & Université Catholique de Louvain, UCL B1.75.05, Avenue Hippocrate, 75, B-1200 Brussels, Belgium.
| |
Collapse
|
7
|
Khatib O, Wood JD, McLeod AS, Goldflam MD, Wagner M, Damhorst GL, Koepke JC, Doidge GP, Rangarajan A, Bashir R, Pop E, Lyding JW, Thiemens MH, Keilmann F, Basov DN. Graphene-Based Platform for Infrared Near-Field Nanospectroscopy of Water and Biological Materials in an Aqueous Environment. ACS NANO 2015. [PMID: 26223158 DOI: 10.1021/acsnano.5b01184] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Scattering scanning near-field optical microscopy (s-SNOM) has emerged as a powerful nanoscale spectroscopic tool capable of characterizing individual biomacromolecules and molecular materials. However, applications of scattering-based near-field techniques in the infrared (IR) to native biosystems still await a solution of how to implement the required aqueous environment. In this work, we demonstrate an IR-compatible liquid cell architecture that enables near-field imaging and nanospectroscopy by taking advantage of the unique properties of graphene. Large-area graphene acts as an impermeable monolayer barrier that allows for nano-IR inspection of underlying molecular materials in liquid. Here, we use s-SNOM to investigate the tobacco mosaic virus (TMV) in water underneath graphene. We resolve individual virus particles and register the amide I and II bands of TMV at ca. 1520 and 1660 cm(-1), respectively, using nanoscale Fourier transform infrared spectroscopy (nano-FTIR). We verify the presence of water in the graphene liquid cell by identifying a spectral feature associated with water absorption at 1610 cm(-1).
Collapse
Affiliation(s)
- Omar Khatib
- Department of Physics, Department of Chemistry, and JILA, University of Colorado , Boulder, Colorado 80309, United States
| | - Joshua D Wood
- Department of Materials Science and Engineering, Northwestern University , Evanston, Illinois 60208, United States
| | | | | | | | | | | | | | | | | | - Eric Pop
- Department of Electrical Engineering, Stanford University , Stanford, California 94305, United States
| | | | | | - Fritz Keilmann
- Ludwig-Maximilians-Universität and Center for Nanoscience , 80539 München, Germany
| | | |
Collapse
|
8
|
Czajkowsky DM, Sun J, Shao Z. Illuminated up close: near-field optical microscopy of cell surfaces. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:119-25. [DOI: 10.1016/j.nano.2014.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/10/2014] [Indexed: 01/22/2023]
|
9
|
ZHANG J, ZHANG BL, TANG JL. Effect of Cancer Drug LHRH-PE40 on the Elasticity of Living HeLa Cells. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2014. [DOI: 10.1016/s1872-2040(14)60747-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Axelrod D. Evanescent excitation and emission in fluorescence microscopy. Biophys J 2013; 104:1401-9. [PMID: 23561516 DOI: 10.1016/j.bpj.2013.02.044] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 02/20/2013] [Accepted: 02/25/2013] [Indexed: 02/02/2023] Open
Abstract
Evanescent light-light that does not propagate but instead decays in intensity over a subwavelength distance-appears in both excitation (as in total internal reflection) and emission (as in near-field imaging) forms in fluorescence microscopy. This review describes the physical connection between these two forms as a consequence of geometrical squeezing of wavefronts, and describes newly established or speculative applications and combinations of the two. In particular, each can be used in analogous ways to produce surface-selective images, to examine the thickness and refractive index of films (such as lipid multilayers or protein layers) on solid supports, and to measure the absolute distance of a fluorophore to a surface. In combination, the two forms can further increase selectivity and reduce background scattering in surface images. The polarization properties of each lead to more sensitive and accurate measures of fluorophore orientation and membrane micromorphology. The phase properties of the evanescent excitation lead to a method of creating a submicroscopic area of total internal reflection illumination or enhanced-resolution structured illumination. Analogously, the phase properties of evanescent emission lead to a method of producing a smaller point spread function, in a technique called virtual supercritical angle fluorescence.
Collapse
Affiliation(s)
- Daniel Axelrod
- Department of Physics, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
11
|
Huckabay HA, Armendariz KP, Newhart WH, Wildgen SM, Dunn RC. Near-field scanning optical microscopy for high-resolution membrane studies. Methods Mol Biol 2013; 950:373-94. [PMID: 23086886 PMCID: PMC3535274 DOI: 10.1007/978-1-62703-137-0_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
The desire to directly probe biological structures on the length scales that they exist has driven the steady development of various high-resolution microscopy techniques. Among these, optical microscopy and, in particular, fluorescence-based approaches continue to occupy dominant roles in biological studies given their favorable attributes. Fluorescence microscopy is both sensitive and specific, is generally noninvasive toward biological samples, has excellent temporal resolution for dynamic studies, and is relatively inexpensive. Light-based microscopies can also exploit a myriad of contrast mechanisms based on spectroscopic signatures, energy transfer, polarization, and lifetimes to further enhance the specificity or information content of a measurement. Historically, however, spatial resolution has been limited to approximately half the wavelength due to the diffraction of light. Near-field scanning optical microscopy (NSOM) is one of several optical approaches currently being developed that combines the favorable attributes of fluorescence microscopy with superior spatial resolution. NSOM is particularly well suited for studies of both model and biological membranes and application to these systems is discussed.
Collapse
Affiliation(s)
- Heath A Huckabay
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA
| | | | | | | | | |
Collapse
|
12
|
Awsiuk K, Bernasik A, Kitsara M, Budkowski A, Petrou P, Kakabakos S, Prauzner-Bechcicki S, Rysz J, Raptis I. Spectroscopic and microscopic characterization of biosensor surfaces with protein/amino-organosilane/silicon structure. Colloids Surf B Biointerfaces 2012; 90:159-68. [DOI: 10.1016/j.colsurfb.2011.10.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 09/24/2011] [Accepted: 10/11/2011] [Indexed: 10/16/2022]
|
13
|
Loura LMS, Prieto M. Lateral Membrane Heterogeneity Probed by FRET Spectroscopy and Microscopy. SPRINGER SERIES ON FLUORESCENCE 2012. [DOI: 10.1007/4243_2012_59] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
|
15
|
Schulte A, Nebel M, Schuhmann W. Single Live Cell Topography and Activity Imaging with the Shear-Force-Based Constant-Distance Scanning Electrochemical Microscope. Methods Enzymol 2012; 504:237-54. [DOI: 10.1016/b978-0-12-391857-4.00012-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Huckabay HA, Dunn RC. Hydration effects on membrane structure probed by single molecule orientations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:2658-2666. [PMID: 21319764 DOI: 10.1021/la104792w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Single molecule fluorescence measurements are used to probe the structural changes in glass-supported DPPC bilayers as a function of relative humidity (RH). Defocused polarized total internal reflection fluorescence microscopy is employed to determine the three-dimensional orientation of the fluorescent lipid analogue BODIPY-PC, doped into DPPC membranes in trace amounts. Supported DPPC bilayers formed using vesicle fusion and Langmuir-Blodgett/Langmuir-Schäfer (LB/LS) transfer are compared and show similar trends as a function of relative humidity. Population histograms of the emission dipole tilt angle reveal bimodal distributions as observed previously for BODIPY-PC in DPPC. These distributions are dominated by large populations of BODIPY-PC molecules with emission dipoles oriented parallel (≥81°) and normal (≤10°) to the membrane plane, with less than 25% oriented at intermediate tilts. As the relative humidity is increased from 13% to 95%, the population of molecules oriented normal to the surface decreases with a concomitant increase in those oriented parallel to the surface. The close agreement in trends observed for bilayers formed from vesicle fusion and LB/LS transfer supports the assignment of an equivalent surface pressure of 23 mN/m for bilayers formed from vesicle fusion. At each RH condition, a small population of BODIPY-PC dye molecules are laterally mobile in both bilayer preparations. This population exponentially increases with RH but never exceeds 6% of the total population. Interestingly, even under conditions where there is little lateral diffusion, fluctuations in the single molecule orientations can be observed which suggests there is appreciable freedom in the acyl chain region. Dynamic measurements of single molecule orientation changes, therefore, provide a new view into membrane properties at the single molecule level.
Collapse
Affiliation(s)
- Heath A Huckabay
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas , 2030 Becker Drive, Lawrence, Kansas 66047, United States
| | | |
Collapse
|
17
|
Claridge SA, Schwartz JJ, Weiss PS. Electrons, photons, and force: quantitative single-molecule measurements from physics to biology. ACS NANO 2011; 5:693-729. [PMID: 21338175 PMCID: PMC3043607 DOI: 10.1021/nn103298x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 01/10/2011] [Indexed: 05/19/2023]
Abstract
Single-molecule measurement techniques have illuminated unprecedented details of chemical behavior, including observations of the motion of a single molecule on a surface, and even the vibration of a single bond within a molecule. Such measurements are critical to our understanding of entities ranging from single atoms to the most complex protein assemblies. We provide an overview of the strikingly diverse classes of measurements that can be used to quantify single-molecule properties, including those of single macromolecules and single molecular assemblies, and discuss the quantitative insights they provide. Examples are drawn from across the single-molecule literature, ranging from ultrahigh vacuum scanning tunneling microscopy studies of adsorbate diffusion on surfaces to fluorescence studies of protein conformational changes in solution.
Collapse
Affiliation(s)
| | | | - Paul S. Weiss
- California NanoSystems Institute
- Department of Chemistry and Biochemistry
- Department of Materials Science and Engineering
- Address correspondence to
| |
Collapse
|