1
|
Mourdikoudis S, Kostopoulou A, LaGrow AP. Magnetic Nanoparticle Composites: Synergistic Effects and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004951. [PMID: 34194936 PMCID: PMC8224446 DOI: 10.1002/advs.202004951] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 05/17/2023]
Abstract
Composite materials are made from two or more constituent materials with distinct physical or chemical properties that, when combined, produce a material with characteristics which are at least to some degree different from its individual components. Nanocomposite materials are composed of different materials of which at least one has nanoscale dimensions. Common types of nanocomposites consist of a combination of two different elements, with a nanoparticle that is linked to, or surrounded by, another organic or inorganic material, for example in a core-shell or heterostructure configuration. A general family of nanoparticle composites concerns the coating of a nanoscale material by a polymer, SiO2 or carbon. Other materials, such as graphene or graphene oxide (GO), are used as supports forming composites when nanoscale materials are deposited onto them. In this Review we focus on magnetic nanocomposites, describing their synthetic methods, physical properties and applications. Several types of nanocomposites are presented, according to their composition, morphology or surface functionalization. Their applications are largely due to the synergistic effects that appear thanks to the co-existence of two different materials and to their interface, resulting in properties often better than those of their single-phase components. Applications discussed concern magnetically separable catalysts, water treatment, diagnostics-sensing and biomedicine.
Collapse
Affiliation(s)
- Stefanos Mourdikoudis
- Biophysics GroupDepartment of Physics and AstronomyUniversity College LondonLondonWC1E 6BTUK
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories21 Albemarle StreetLondonW1S 4BSUK
| | - Athanasia Kostopoulou
- Institute of Electronic Structure and Laser (IESL)Foundation for Research and Technology‐Hellas (FORTH)100 Nikolaou PlastiraHeraklionCrete70013Greece
| | - Alec P. LaGrow
- International Iberian Nanotechnology LaboratoryBraga4715‐330Portugal
| |
Collapse
|
2
|
Wang N, Wu R, Fu Q, Wang H, Zhang Z, Haji Z, Li X, Lian X, An Y. Immobilization of β
-Glucosidase BglC on Decanedioic Acid-Modified Magnetic Nanoparticles. Chem Eng Technol 2018. [DOI: 10.1002/ceat.201700477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Nuo Wang
- Shenyang Agricultural University; College of Biosciences and Biotechnology; No. 120 Dongling Road 110161 Shenyang China
| | - Rina Wu
- Shenyang Agricultural University; College of Food Science; No. 120 Dongling Road 110161 Shenyang China
| | - Qiang Fu
- Forestry Department of Liaoning Province; Qingshan Protection Bureau; No. 126 Changjiang Street 110036 Shenyang China
| | - Hongling Wang
- Shenyang Agricultural University; College of Biosciences and Biotechnology; No. 120 Dongling Road 110161 Shenyang China
- Shenyang Agricultural University; College of Food Science; No. 120 Dongling Road 110161 Shenyang China
| | - Zheng Zhang
- Shenyang Agricultural University; College of Biosciences and Biotechnology; No. 120 Dongling Road 110161 Shenyang China
| | - Ze Haji
- Shenyang Agricultural University; College of Biosciences and Biotechnology; No. 120 Dongling Road 110161 Shenyang China
| | - Xiutong Li
- Shenyang Agricultural University; College of Biosciences and Biotechnology; No. 120 Dongling Road 110161 Shenyang China
| | - Xinglong Lian
- Shenyang Agricultural University; College of Biosciences and Biotechnology; No. 120 Dongling Road 110161 Shenyang China
| | - Yingfeng An
- Shenyang Agricultural University; College of Biosciences and Biotechnology; No. 120 Dongling Road 110161 Shenyang China
| |
Collapse
|
3
|
Song E, Han W, Xu H, Jiang Y, Cheng D, Song Y, Swihart MT. Magnetically Encoded Luminescent Composite Nanoparticles through Layer-by-Layer Self-Assembly. Chemistry 2014; 20:14642-9. [DOI: 10.1002/chem.201403699] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 08/11/2014] [Indexed: 02/02/2023]
|
4
|
Yi L, Wu T, Luo W, Zhou W, Wu J. A non-invasive, rapid method to genotype late-onset Alzheimer's disease-related apolipoprotein E gene polymorphisms. Neural Regen Res 2014; 9:69-75. [PMID: 25206745 PMCID: PMC4146311 DOI: 10.4103/1673-5374.125332] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2013] [Indexed: 12/21/2022] Open
Abstract
The apolipoprotein E gene ε4 allele is considered a negative factor for neural regeneration in late-onset Alzheimer's disease cases. The aim of this study was to establish a non-invasive, rapid method to genotype apolipoprotein E gene polymorphisms. Genomic DNA from mouth swab specimens was extracted using magnetic nanoparticles, and genotyping was performed by real-time PCR using TaqMan-BHQ probes. Genotyping accuracy was validated by DNA sequencing. Our results demonstrate 100% correlation to DNA sequencing, indicating reliability of our protocol. Thus, the method we have developed for apolipoprotein E genotyping is accurate and reliable, and also suitable for genotyping large samples, which may help determine the role of the apolipoprotein E ε4 allele in neural regeneration in late-onset Alzheimer's disease cases.
Collapse
Affiliation(s)
- Li Yi
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Ting Wu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Wenyuan Luo
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Wen Zhou
- Department of Radiology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Jun Wu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| |
Collapse
|
5
|
Wang G, Jin L, Dong Y, Niu L, Liu Y, Ren F, Su X. Multifunctional Fe3O4–CdTe@SiO2–carboxymethyl chitosan drug nanocarriers: synergistic effect towards magnetic targeted drug delivery and cell imaging. NEW J CHEM 2014. [DOI: 10.1039/c3nj01207g] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Shibu ES, Ono K, Sugino S, Nishioka A, Yasuda A, Shigeri Y, Wakida SI, Sawada M, Biju V. Photouncaging nanoparticles for MRI and fluorescence imaging in vitro and in vivo. ACS NANO 2013; 7:9851-9859. [PMID: 24083410 DOI: 10.1021/nn4043699] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Multimodal and multifunctional nanomaterials are promising candidates for bioimaging and therapeutic applications in the nanomedicine settings. Here we report the preparation of photouncaging nanoparticles with fluorescence and magnetic modalities and evaluation of their potentials for in vitro and in vivo bioimaging. Photoactivation of such bimodal nanoparticles prepared using photouncaging ligands, CdSe/ZnS quantum dots, and super paramagnetic iron oxide nanoparticles results in the systematic uncaging of the particles, which is correlated with continuous changes in the absorption, mass and NMR spectra of the ligands. Fluorescence and magnetic components of the bimodal nanoparticles are characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and elemental analyses using energy dispersive X-ray (EDX) spectroscopy and X-ray photoelectron spectroscopy (XPS). Bioconjugation of the nanoparticles with peptide hormones renders them with biocompatibility and efficient intracellular transport as seen in the fluorescence and MRI images of mouse melanoma cells (B16) or human lung epithelial adenocarcinoma cells (H1650). Biocompatibility of the nanoparticles is evaluated using MTT cytotoxicity assays, which show cell viability over 90%. Further, we combine MRI and NIR fluorescence imaging in C57BL/6 (B6) mice subcutaneously or intravenously injected with the photouncaging nanoparticles and follow the in vivo fate of the nanoparticles. Interestingly, the intravenously injected nanoparticles initially accumulate in the liver within 30 min post injection and subsequently clear by the renal excretion within 48 h as seen in the time-dependent MRI and fluorescence images of the liver, urinary bladder, and urine samples. Photouncaging ligands such as the ones reported in this article are promising candidates for not only the site-specific delivery of nanomaterials-based contrast agents and drugs but also the systematic uncaging and renal clearance of nanomaterials after the desired in vivo application.
Collapse
Affiliation(s)
- Edakkattuparambil S Shibu
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) , Takamatsu, Kagawa 761-0395, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Yi L, Huang Y, Wu T, Wu J. A magnetic nanoparticles-based method for DNA extraction from the saliva of stroke patients. Neural Regen Res 2013; 8:3036-46. [PMID: 25206624 PMCID: PMC4146207 DOI: 10.3969/j.issn.1673-5374.2013.32.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 08/27/2013] [Indexed: 11/18/2022] Open
Abstract
C677T polymorphism in the methylenetetrahydrofolate reductase (MTHFR) gene is a risk factor for stroke, suggesting that widespread detection could help to prevent stroke. DNA from 70 stroke patients and 70 healthy controls was extracted from saliva using a magnetic nanoparticles-based method and from blood using conventional methods. Real-time PCR results revealed that the C677T polymorphism was genotyped by PCR using DNA extracted from both saliva and blood samples. The genotype results were confirmed by gene sequencing, and results for saliva and blood samples were consistent. The mutation TT genotype frequency was significantly higher in the stroke group than in controls. Homocysteine levels were significantly higher than controls in both TT genotype groups. Therefore, this noninvasive magnetic nanoparticles-based method using saliva samples could be used to screen for the MTHFR C677T polymorphism in target populations.
Collapse
Affiliation(s)
- Li Yi
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Ying Huang
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Ting Wu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Jun Wu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| |
Collapse
|
8
|
Rittich B, Španová A. SPE and purification of DNA using magnetic particles. J Sep Sci 2013; 36:2472-85. [DOI: 10.1002/jssc.201300331] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/13/2013] [Accepted: 05/13/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Bohuslav Rittich
- Faculty of Chemistry; Brno University of Technology; Brno Czech Republic
| | - Alena Španová
- Faculty of Chemistry; Brno University of Technology; Brno Czech Republic
| |
Collapse
|
9
|
Chen G, Ma Y, Su P, Fang B. Direct binding glucoamylase onto carboxyl-functioned magnetic nanoparticles. Biochem Eng J 2012. [DOI: 10.1016/j.bej.2012.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
10
|
Zou X, Huang H, Gao Y, Su X. Detection of avian influenza virus based on magnetic silicananoparticles resonance light scattering system. Analyst 2012; 137:648-53. [DOI: 10.1039/c1an16041a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Wang G, Su X. The synthesis and bio-applications of magnetic and fluorescent bifunctional composite nanoparticles. Analyst 2011; 136:1783-98. [PMID: 21431200 DOI: 10.1039/c1an15036g] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Magnetic-fluorescent composite nanoparticles as a new kind of nanoparticle have attracted much attention in recent years. The composite nanoparticles combine the fluorescent properties, magnetic properties and the physical properties of nano-size, so they can offer a range of potential applications, such as bioseparation and bio-imaging, tumor cell localization, and even cancer treatment. This Minireview will introduce the main synthesis strategies for the fabrication of magnetic-fluorescent composite nanoparticles, the current and potential bio-application of magnetic-fluorescent nanocomposites, including protein and DNA separation and detection, bio-imaging and sorting in vitro and in vivo, drug delivery and the cancer treatment.
Collapse
Affiliation(s)
- Guannan Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | | |
Collapse
|
12
|
Zhang Y, Wang Z, Jiang W. A sensitive fluorimetric biosensor for detection of DNA hybridization based on Fe/Au core/shell nanoparticles. Analyst 2011; 136:702-7. [DOI: 10.1039/c0an00583e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|