1
|
Fan J, Ma W, Yu Y, Li Y, Nie Z. Recent advances in entirely hand-held ionization sources for mass spectrometry. Anal Bioanal Chem 2024; 416:2057-2063. [PMID: 37930374 DOI: 10.1007/s00216-023-05022-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/07/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Ambient ionization mass spectrometry (AIMS) has been developing explosively since its first debut. The ionization process was hence able to be achieved under atmospheric pressure, facilitating on-site field analysis in a variety of areas, such as clinical diagnosis, metabolic phenotyping, and surface analysis. As part of the ambitious goal of making MS a general device that can be used in everyday life, lots of efforts have been paid to miniaturize the ionization source. This review discusses avant-garde sources that could be entirely hand-held without any accessories. The structure and applications of the devices are described in detail as well. They could be expediently used in real-time and on-site analysis, presenting a great future potential for the routinizing of MS.
Collapse
Affiliation(s)
- Jinghan Fan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenbo Ma
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Yile Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuze Li
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China.
| | - Zongxiu Nie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China.
| |
Collapse
|
2
|
Serb AF, Georgescu M, Onulov R, Novaconi CR, Sisu E, Bolocan A, Sandu RE. Mass-Spectrometry-Based Research of Cosmetic Ingredients. Molecules 2024; 29:1336. [PMID: 38542972 PMCID: PMC10974329 DOI: 10.3390/molecules29061336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 11/12/2024] Open
Abstract
Cosmetic products are chemical substances or mixtures used on the skin, hair, nails, teeth, and the mucous membranes of the oral cavity, whose use is intended to clean, protect, correct body odor, perfume, keep in good condition, or change appearance. The analysis of cosmetic ingredients is often challenging because of their huge complexity and their adulteration. Among various analytical tools, mass spectrometry (MS) has been largely used for compound detection, ingredient screening, quality control, detection of product authenticity, and health risk evaluation. This work is focused on the MS applications in detecting and quantification of some common cosmetic ingredients, i.e., preservatives, dyes, heavy metals, allergens, and bioconjugates in various matrices (leave-on or rinse-off cosmetic products). As a global view, MS-based analysis of bioconjugates is a narrow field, and LC- and GC/GC×GC-MS are widely used for the investigation of preservatives, dyes, and fragrances, while inductively coupled plasma (ICP)-MS is ideal for comprehensive analysis of heavy metals. Ambient ionization approaches and advanced separation methods (i.e., convergence chromatography (UPC2)) coupled to MS have been proven to be an excellent choice for the analysis of scented allergens. At the same time, the current paper explores the challenges of MS-based analysis for cosmetic safety studies.
Collapse
Affiliation(s)
- Alina Florina Serb
- Biochemistry Discipline, Biochemistry and Pharmacology Department, Victor Babes University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. No.2, 300041 Timisoara, Romania
| | - Marius Georgescu
- Physiology Discipline, Functional Sciences Department, Victor Babes University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. No.2, 300041 Timisoara, Romania
- Center of Immuno-Physiology and Biotechnologies (CIFBIOTEH), "Victor Babeș" University of Medicine and Pharmacy Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Robert Onulov
- Faculty of Medicine, Victor Babes University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. No.2, 300041 Timisoara, Romania
| | - Cristina Ramona Novaconi
- Faculty of Medicine, Victor Babes University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. No.2, 300041 Timisoara, Romania
| | - Eugen Sisu
- Biochemistry Discipline, Biochemistry and Pharmacology Department, Victor Babes University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. No.2, 300041 Timisoara, Romania
| | - Alexandru Bolocan
- Physiology Discipline, Functional Sciences Department, Victor Babes University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. No.2, 300041 Timisoara, Romania
| | - Raluca Elena Sandu
- Department of Neurology, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania
| |
Collapse
|
3
|
Kumar BS. Recent developments and applications of ambient mass spectrometry imaging in pharmaceutical research: an overview. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 16:8-32. [PMID: 38088775 DOI: 10.1039/d3ay01267k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The application of ambient mass spectrometry imaging "MSI" is expanding in the areas of fundamental research on drug delivery and multiple phases of the process of identifying and developing drugs. Precise monitoring of a drug's pharmacological workflows, such as intake, distribution, metabolism, and discharge, is made easier by MSI's ability to determine the concentrations of the initiating drug and its metabolites across dosed samples without losing spatial data. Lipids, glycans, and proteins are just a few of the many phenotypes that MSI may be used to concurrently examine. Each of these substances has a particular distribution pattern and biological function throughout the body. MSI offers the perfect analytical tool for examining a drug's pharmacological features, especially in vitro and in vivo effectiveness, security, probable toxic effects, and putative molecular pathways, because of its high responsiveness in chemical and physical environments. The utilization of MSI in the field of pharmacy has further extended from the traditional tissue examination to the early stages of drug discovery and development, including examining the structure-function connection, high-throughput capabilities in vitro examination, and ex vivo research on individual cells or tumor spheroids. Additionally, an enormous array of endogenous substances that may function as tissue diagnostics can be scanned simultaneously, giving the specimen a highly thorough characterization. Ambient MSI techniques are soft enough to allow for easy examination of the native sample to gather data on exterior chemical compositions. This paper provides a scientific and methodological overview of ambient MSI utilization in research on pharmaceuticals.
Collapse
Affiliation(s)
- Bharath Sampath Kumar
- Independent researcher, 21, B2, 27th Street, Lakshmi Flats, Nanganallur, Chennai 600061, India.
| |
Collapse
|
4
|
Millán-Santiago J, Lucena R, Cárdenas S. Nylon 6-cellulose composite hosted in a hypodermic needle: Biofluid extraction and analysis by ambient mass spectrometry in a single device. J Pharm Anal 2023; 13:1346-1352. [PMID: 38174121 PMCID: PMC10759252 DOI: 10.1016/j.jpha.2023.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/28/2023] [Accepted: 06/27/2023] [Indexed: 01/05/2024] Open
Abstract
This study proposes a hypodermic needle (HN) as a sorbent holder and an electrospray (ESI) emitter, thus combining extraction and analysis in a single device. A novel nylon 6-cellulose (N6-Cel) composite sorbent is proposed to extract methadone from oral fluid samples. The cellulosic substrate provides the composite with high porosity, permitting the flow-through of the sample, while the polyamide contributes to the extraction of the analyte. The low price of the devices (considering the holder and the sorbent) contributes to the affordability of the method, and their small size allows easy transportation, opening the door to on-site extractions. Under the optimum conditions, the analyte can be determined by high-resolution ambient ionization mass spectrometry at a limit of detection (LOD) as low as 0.3 μg/L and precision (expressed as relative standard deviation, RSD) better than 9.3%. The trueness, expressed as relative recovery (RR), ranged from 90% to 109%. As high-resolution mass spectrometers are not available in many laboratories, the method was also adapted to low-resolution spectrometers. In this sense, the direct infusion of the eluates in a triple quadrupole-mass spectrometry provided an LOD of 2.2 μg/L. The RSD was better than 5.3%, and the RR ranged from 96% to 121%.
Collapse
Affiliation(s)
- Jaime Millán-Santiago
- Affordable and Sustainable Sample Preparation (AS2P) Research Group, Analytical Chemistry Department, Chemical Institute for Energy and Environment (IQUEMA), University of Cordoba, E-14071, Cordoba, Spain
| | - Rafael Lucena
- Affordable and Sustainable Sample Preparation (AS2P) Research Group, Analytical Chemistry Department, Chemical Institute for Energy and Environment (IQUEMA), University of Cordoba, E-14071, Cordoba, Spain
| | - Soledad Cárdenas
- Affordable and Sustainable Sample Preparation (AS2P) Research Group, Analytical Chemistry Department, Chemical Institute for Energy and Environment (IQUEMA), University of Cordoba, E-14071, Cordoba, Spain
| |
Collapse
|
5
|
Atmospheric solids analysis probe-mass spectrometry (ASAP-MS) as a rapid fingerprinting technique to differentiate the harvest seasons of Tieguanyin oolong teas. Food Chem 2023; 408:135135. [PMID: 36527922 DOI: 10.1016/j.foodchem.2022.135135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/13/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Atmospheric solids analysis probe-mass spectrometry (ASAP-MS), an ambient mass spectrometry technique, was used to differentiate spring and autumn Tieguanyin teas. Two configurations were used to obtain their chemical fingerprints - ASAP attached to a high-resolution quadrupole time-of-flight mass spectrometer (i.e., ASAP-QTOF) and to a single-quadrupole mass spectrometer (i.e., Radian™ ASAP™ mass spectrometer). Then, orthogonal projections to latent structures-discriminant analysis was conducted to identify features that held promise in differentiating harvest seasons. Four machine learning models - decision tree, linear discriminant analysis, support vector machine, and k-nearest neighbour - were built using these features, and high classification accuracy of up to 100% was achieved. The markers were putatively identified using their accurate masses and MS/MS fragmentation patterns from ASAP-QTOF. This approach was successfully transferred to the Radian ASAP MS, which is more deployable in the field. Overall, this study demonstrated the potential of ASAP-MS as a rapid fingerprinting tool for differentiating spring and autumn Tieguanyin.
Collapse
|
6
|
Aggregation of Multimodal ICE-MS Data into Joint Classifier Increases Quality of Brain Cancer Tissue Classification. DATA 2022. [DOI: 10.3390/data8010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mass spectrometry fingerprinting combined with multidimensional data analysis has been proposed in surgery to determine if a biopsy sample is a tumor. In the specific case of brain tumors, it is complicated to obtain control samples, leading to model overfitting due to unbalanced sample cohorts. Usually, classifiers are trained using a single measurement regime, most notably single ion polarity, but mass range and spectral resolution could also be varied. It is known that lipid groups differ significantly in their ability to produce positive or negative ions; hence, using only one polarity significantly restricts the chemical space available for sample discrimination purposes. In this work, we have developed an approach employing mass spectrometry data obtained by eight different regimes of measurement simultaneously. Regime-specific classifiers are trained, then a mixture of experts techniques based on voting or mean probability is used to aggregate predictions of all trained classifiers and assign a class to the whole sample. The aggregated classifiers have shown a much better performance than any of the single-regime classifiers and help significantly reduce the effect of an unbalanced dataset without any augmentation.
Collapse
|
7
|
Torres-Ortega R, Guillén-Alonso H, Alcalde-Vázquez R, Ramírez-Chávez E, Molina-Torres J, Winkler R. In Vivo Low-Temperature Plasma Ionization Mass Spectrometry (LTP-MS) Reveals Regulation of 6-Pentyl-2H-Pyran-2-One (6-PP) as a Physiological Variable during Plant-Fungal Interaction. Metabolites 2022; 12:metabo12121231. [PMID: 36557269 PMCID: PMC9783819 DOI: 10.3390/metabo12121231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Volatile organic compounds (VOCs) comprises a broad class of small molecules (up to ~300 g/mol) produced by biological and non-biological sources. VOCs play a vital role in an organism's metabolism during its growth, defense, and reproduction. The well-known 6-pentyl-α-pyrone (6-PP) molecule is an example of a major volatile biosynthesized by Trichoderma atroviride that modulates the expression of PIN auxin-transport proteins in primary roots of Arabidopsis thaliana during their relationship. Their beneficial relation includes lateral root formation, defense induction, and increased plant biomass production. The role of 6-PP has been widely studied due to its relevance in this cross-kingdom relationship. Conventional VOCs measurements are often destructive; samples require further preparation, and the time resolution is low (around hours). Some techniques enable at-line or real-time analyses but are highly selective to defined compounds. Due to these technical constraints, it is difficult to acquire relevant information about the dynamics of VOCs in biological systems. Low-temperature plasma (LTP) ionization allows the analysis of a wide range of VOCs by mass spectrometry (MS). In addition, LTP-MS requires no sample preparation, is solvent-free, and enables the detection of 6-PP faster than conventional analytical methods. Applying static statistical methods such as Principal Component Analysis (PCA) and Discriminant Factorial Analysis (DFA) leads to a loss of information since the biological systems are dynamic. Thus, we applied a time series analysis to find patterns in the signal changes. Our results indicate that the 6-PP signal is constitutively emitted by T. atroviride only; the signal shows high skewness and kurtosis. In A. thaliana grown alone, no signal corresponding to 6-PP is detected above the white noise level. However, during T. atroviride-A. thaliana interaction, the signal performance showed reduced skewness and kurtosis with high autocorrelation. These results suggest that 6-PP is a physiological variable that promotes homeostasis during the plant-fungal relationship. Although the molecular mechanism of this cross-kingdom control is still unknown, our study indicates that 6-PP has to be regulated by A. thaliana during their interaction.
Collapse
Affiliation(s)
- Rosina Torres-Ortega
- Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies (CINVESTAV), Irapuato 36824, Mexico
- UGA-Langebio, Center for Research and Advanced Studies (CINVESTAV) Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Mexico
| | - Héctor Guillén-Alonso
- Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies (CINVESTAV), Irapuato 36824, Mexico
- UGA-Langebio, Center for Research and Advanced Studies (CINVESTAV) Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Mexico
- Department of Biochemical Engineering, Nacional Technological Institute, Celaya 38010, Mexico
| | - Raúl Alcalde-Vázquez
- Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies (CINVESTAV), Irapuato 36824, Mexico
- UGA-Langebio, Center for Research and Advanced Studies (CINVESTAV) Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Mexico
| | - Enrique Ramírez-Chávez
- Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies (CINVESTAV), Irapuato 36824, Mexico
| | - Jorge Molina-Torres
- Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies (CINVESTAV), Irapuato 36824, Mexico
| | - Robert Winkler
- Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies (CINVESTAV), Irapuato 36824, Mexico
- UGA-Langebio, Center for Research and Advanced Studies (CINVESTAV) Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Mexico
- Correspondence:
| |
Collapse
|
8
|
Cody RB. Aperture Size Influences Oxidation in Positive-Ion Nitrogen Direct Analysis in Real Time Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1329-1334. [PMID: 35679328 DOI: 10.1021/jasms.2c00115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Direct Analysis in Real Time (DART) mass spectrometry commonly uses helium as the DART gas. With the looming helium shortage, other gases are being evaluated for DART. Nitrogen is inexpensive and readily available, making it a desirable alternative. However, NO+ reagent ions present in positive-ion nitrogen DART result in extensive oxidation for many compounds. The DART source uses a ceramic insulator cap to protect the operator from electrical shock. The most common cap has an aperture with a 2.5 mm inner diameter, through which the gas exits the DART source. By using a cap with a narrow (0.5 mm) ID, oxidation can be significantly reduced for nitrogen DART. The 0.5 mm cap is hypothesized to reduce back-diffusion of atmospheric oxygen into the DART source, with a reduction in the relative abundance of NO+ and increase in the relative abundance of [(H2O)2 + H]+ as the reactive species responsible for ionization of the analytes.
Collapse
Affiliation(s)
- Robert B Cody
- JEOL USA Inc 11 Dearborn Road, Peabody, Massachusetts 01960, United States
| |
Collapse
|
9
|
Fast and semiquantitative screening for sildenafil in herbal over-the-counter formulations with atmospheric pressure solid analysis probe (ASAP) to prevent medicinal adulteration. J Pharm Biomed Anal 2022; 214:114720. [DOI: 10.1016/j.jpba.2022.114720] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/17/2022] [Accepted: 03/06/2022] [Indexed: 11/20/2022]
|
10
|
Moser D, Hussain S, Rainer M, Jakschitz T, Bonn GK. A validated method for the rapid quantification of melatonin in over-the-counter hypnotics by the atmospheric pressure solid analysis probe (ASAP). ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1603-1610. [PMID: 35383798 DOI: 10.1039/d2ay00352j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Melatonin is a hormone that regulates the biological day and night cycle. It is mainly produced by the pineal gland during the night. People suffering from insomnia use it as a soporific drug. The aim of this study was to develop a method for the rapid quantification of melatonin in hypnotics. For that purpose, atmospheric pressure solid analysis probe-assisted mass spectrometry was applied, where no chromatographic separation is needed. Thereby, one single analysis takes less than 1 min. Reference measurements were performed with ultra-high-performance liquid chromatography coupled with a quadrupole-time-of-flight mass spectrometer. Both methods were validated and real sample extracts were tested. The coefficients of determination were above 0.97 for both methods. The limits of detection and quantification were below 1 mg kg-1. Both methods gave comparable results. Moreover, the content of melatonin differed from the specified value in many samples. The highest and lowest observed deviations were 78% and 1%, respectively.
Collapse
Affiliation(s)
- Daniel Moser
- ADSI-Austrian Drug Screening Institute GmbH, Innrain 66a, 6020 Innsbruck, Austria
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Shah Hussain
- ADSI-Austrian Drug Screening Institute GmbH, Innrain 66a, 6020 Innsbruck, Austria
| | - Matthias Rainer
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Thomas Jakschitz
- ADSI-Austrian Drug Screening Institute GmbH, Innrain 66a, 6020 Innsbruck, Austria
| | - Günther K Bonn
- ADSI-Austrian Drug Screening Institute GmbH, Innrain 66a, 6020 Innsbruck, Austria
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
11
|
Rapid authentication of Chinese oolong teas using atmospheric solids analysis probe-mass spectrometry (ASAP-MS) combined with supervised pattern recognition models. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108736] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Contemporary Research Progress on the Detection of Polycyclic Aromatic Hydrocarbons. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052790. [PMID: 35270481 PMCID: PMC8910359 DOI: 10.3390/ijerph19052790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 02/06/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of the most common and widespread contaminants. The accumulation of PAHs has made a certain impact on the environment and is seriously threatening human health. Numerous general analytical methods suitable for PAHs were developed. With the development of economy, the environmental problems of PAHs in modern society are more extensive and prominent, and attract more attention from environmental scientists and analysts. Deeper understanding of the properties of PAHs depends on the advent of detection methods, which can also be more conducive to promoting the protection of the environment. Till now, more sensitive, more high-speed and more high-throughput analytical tools are being invented and have played important roles in the research of PAHs. In this short review article, we focused mainly on the contemporary analytical methods about PAHs. We started with a brief review on the hazards, migration, distribution and traditional analysis methods of PAHs in recent years, including liquid chromatography, gas chromatography, surface enhanced Raman spectroscopy and so on. We also presented the applications of the modern ambient mass spectrometry, especially microwave plasma torch mass spectrometry, in the detection of PAHs, as well as the far out novel results in our lab by using microwave plasma torch (MPT) mass spectrometry; for example, some new insights about Birch reduction, regular hydrogen addition and the robustness of molecular structure. These studies have demonstrated the versatility of MPT MS as a platform in the research of PAHs.
Collapse
|
13
|
Hong Y, Birse N, Quinn B, Montgomery H, Wu D, Rosas da Silva G, van Ruth SM, Elliott CT. Identification of milk from different animal and plant sources by desorption electrospray ionisation high-resolution mass spectrometry (DESI-MS). NPJ Sci Food 2022; 6:14. [PMID: 35149683 PMCID: PMC8837636 DOI: 10.1038/s41538-022-00129-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/19/2022] [Indexed: 11/09/2022] Open
Abstract
This study used desorption electrospray ionisation mass spectrometry (DESI-MS) to analyse and detect and classify biomarkers in five different animal and plant sources of milk for the first time. A range of differences in terms of features was observed in the spectra of cow milk, goat milk, camel milk, soya milk, and oat milk. Chemometric modelling was then used to classify the mass spectra data, enabling unique or significant markers for each milk source to be identified. The classification of different milk sources was achieved with a cross-validation percentage rate of 100% through linear discriminate analysis (LDA) with high sensitivity to adulteration (0.1-5% v/v). The DESI-MS results from the milk samples analysed show the methodology to have high classification accuracy, and in the absence of complex sample clean-up which is often associated with authenticity testing, to be a rapid and efficient approach for milk fraud control.
Collapse
Affiliation(s)
- Yunhe Hong
- ASSET Technology Centre, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, UK.
| | - Nicholas Birse
- ASSET Technology Centre, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, UK
| | - Brian Quinn
- ASSET Technology Centre, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, UK
| | - Holly Montgomery
- ASSET Technology Centre, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, UK
| | - Di Wu
- ASSET Technology Centre, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, UK
| | - Gonçalo Rosas da Silva
- ASSET Technology Centre, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, UK
| | - Saskia M van Ruth
- Food Quality and Design Group, Wageningen University and Research, western, the Netherlands
| | - Christopher T Elliott
- ASSET Technology Centre, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, UK
| |
Collapse
|
14
|
Oliveira LFC, Tega DU, Eberlin MN, Sussulini A. Liquid chromatography coupled to Venturi easy ambient sonic spray ionization mass spectrometry. Talanta 2022; 238:123004. [PMID: 34857338 DOI: 10.1016/j.talanta.2021.123004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/15/2021] [Accepted: 10/26/2021] [Indexed: 01/02/2023]
Abstract
Venturi easy ambient sonic spray ionization (V-EASI) is a soft ambient ionization (AI) source that has the advantages of being suitable to the analysis of samples in solution (differently from the majority of AI sources), performing self-pumping, voltage- and heat-free ionization, and requiring minimum or no sample preparation. Since this ionization technique has not been fully explored, the present study provides a proof of principle of the coupling of liquid chromatography to mass spectrometry (LC-MS) using V-EASI as the interface. In order to test the performance of the developed LC-V-EASI-MS system, a quantification method for bixin, a natural dye from annatto (Bixa Orellana L.), which is known to be sensitive to the high voltage applied for electrospray ionization mass spectrometry (ESI-MS) analysis, was validated according to FDA criteria and tested in real samples. The analytical method was successfully applied and met the validation criteria, providing a detectability 10 times better than methods already reported to the quantification of bixin and no matrix effect was observed. Therefore, this proof of principle contributes to the continuous development of AI sources that represents the last great technological advance in MS towards becoming a miniaturized technique able to analyze samples closer to their actual state.
Collapse
Affiliation(s)
- Luan Felipe Campos Oliveira
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Department of Analytical Chemistry, Institute of Chemistry, University of Campinas - UNICAMP, 13083-970, Campinas, SP, Brazil.
| | - David Ulisses Tega
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Department of Analytical Chemistry, Institute of Chemistry, University of Campinas - UNICAMP, 13083-970, Campinas, SP, Brazil
| | | | - Alessandra Sussulini
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Department of Analytical Chemistry, Institute of Chemistry, University of Campinas - UNICAMP, 13083-970, Campinas, SP, Brazil
| |
Collapse
|
15
|
Paper spray ionization mass spectrometry applied for quantification of pesticides and discrimination from tomato varieties (Solanum lycopersicum). J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Cody RB. Qualitative Analysis of Acid Salts with Direct Analysis in Real Time Mass Spectrometry by Conversion to the Free Acid Form. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:207-210. [PMID: 34935389 DOI: 10.1021/jasms.1c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Organic acid salts typically have very low volatility and are not well suited for analysis by Direct Analysis in Real Time mass spectrometry (DART-MS). However, qualitative analysis of organic acid salts by DART can be facilitated by the addition of a strong acid to convert the compounds to the free acid form. Examples are presented here for inorganic salts (sodium and potassium perchlorate) and several organic salts, including three disodium salts and a mixed sodium/potassium salt.
Collapse
Affiliation(s)
- Robert B Cody
- JEOL USA, Inc. 11 Dearborn Road, Peabody, Massachusetts 01960 United States
| |
Collapse
|
17
|
Moreno-Pedraza A, Garcia-Rojas NS, Winkler R. Analyzing the Distribution of Specialized Metabolites from Plant Native Tissues with Laser Desorption Low-Temperature Plasma Mass Spectrometry Imaging. Methods Mol Biol 2022; 2469:145-154. [PMID: 35508836 DOI: 10.1007/978-1-0716-2185-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The localization of metabolites in plant tissues is often related to their biological function and biosynthesis. Mass spectrometry imaging (MSI) provides comprehensive information about the distribution of known and unknown compounds in tissues. In this protocol, we describe the use of laser desorption low-temperature plasma (LD-LTP) ionization MSI. This technology enables the direct analysis of native tissues under ambient conditions.
Collapse
Affiliation(s)
- Abigail Moreno-Pedraza
- Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies (CINVESTAV), Irapuato, Gto, Mexico
| | - Nancy Shyrley Garcia-Rojas
- Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies (CINVESTAV), Irapuato, Gto, Mexico
| | - Robert Winkler
- Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies (CINVESTAV), Irapuato, Gto, Mexico.
| |
Collapse
|
18
|
Alves MVS, Maciel LIL, Ramalho RRF, Lima LAS, Vaz BG, Morais CLM, Passos JOS, Pegado R, Lima KMG. Multivariate classification techniques and mass spectrometry as a tool in the screening of patients with fibromyalgia. Sci Rep 2021; 11:22625. [PMID: 34799667 PMCID: PMC8604931 DOI: 10.1038/s41598-021-02141-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/29/2021] [Indexed: 11/09/2022] Open
Abstract
Fibromyalgia is a rheumatological disorder that causes chronic pain and other symptomatic conditions such as depression and anxiety. Despite its relevance, the disease still presents a complex diagnosis where the doctor needs to have a correct clinical interpretation of the symptoms. In this context, it is valid to study tools that assist in the screening of this disease, using chemical work techniques such as mass spectroscopy. In this study, an analytical method is proposed to detect individuals with fibromyalgia (n = 20, 10 control samples and 10 samples with fibromyalgia) from blood plasma samples analyzed by mass spectrometry with paper spray ionization and subsequent multivariate classification of the spectral data (unsupervised and supervised), in addition to the treatment of selected variables with possible associations with metabolomics. Exploratory analysis with principal component analysis (PCA) and supervised analysis with successive projections algorithm with linear discriminant analysis (SPA-LDA) showed satisfactory results with 100% accuracy for sample prediction in both groups. This demonstrates that this combination of techniques can be used as a simple, reliable and fast tool in the development of clinical diagnosis of Fibromyalgia.
Collapse
Affiliation(s)
- Marcelo V S Alves
- Institute of Chemistry, Biological Chemistry and Chemometrics, Federal University of Rio Grande do Norte, Natal, 59072-970, Brazil
| | - Lanaia I L Maciel
- Institute of Chemistry, Federal University of Goiás, Samambaia St., Goiânia, GO, 74690-900, Brazil
| | - Ruver R F Ramalho
- Institute of Chemistry, Federal University of Goiás, Samambaia St., Goiânia, GO, 74690-900, Brazil
| | - Leomir A S Lima
- Estácio de Sá Goiás, North Regional, Goiânia, GO, 74063-010, Brazil
| | - Boniek G Vaz
- Institute of Chemistry, Federal University of Goiás, Samambaia St., Goiânia, GO, 74690-900, Brazil
| | - Camilo L M Morais
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - João O S Passos
- Postgraduation Program in Rehabilitation Sciences, Faculty of Health Science of Trairí, Federal University of Rio Grande do Norte, Trairí St., Santa Cruz, RN, 59200-000, Brazil
| | - Rodrigo Pegado
- Postgraduation Program in Rehabilitation Sciences, Faculty of Health Science of Trairí, Federal University of Rio Grande do Norte, Trairí St., Santa Cruz, RN, 59200-000, Brazil
| | - Kássio M G Lima
- Institute of Chemistry, Biological Chemistry and Chemometrics, Federal University of Rio Grande do Norte, Natal, 59072-970, Brazil.
| |
Collapse
|
19
|
Simon D, Oleschuk R. The liquid micro junction-surface sampling probe (LMJ-SSP); a versatile ambient mass spectrometry interface. Analyst 2021; 146:6365-6378. [PMID: 34553725 DOI: 10.1039/d1an00725d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ambient ionization methods have become important tools in mass spectrometry. The LMJ-SSP can significantly simplify/reduce lengthy sample preparation requirements associated with mass spectrometry analysis. Samples may be introduced through direct contact, insertion and droplet injection, enabling applications from drug discovery and surface analysis to tissue profiling and metabolic mapping. This review examines the underlying principles associated with the LMJ-SSP interface and highlights modifications of the original design that have extended its capability. We summarize different application areas that have exploited the method and describe potential future directions for the adaptable ambient ionization source.
Collapse
Affiliation(s)
- David Simon
- Department of Chemistry, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| | - Richard Oleschuk
- Department of Chemistry, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
20
|
Kolluru S, Singh M, Gaskins B, Boskovic Z. Nickel-Catalyzed Annulations of ortho-Haloarylimines. ACS Catal 2021; 11:10351-10361. [PMID: 34777907 DOI: 10.1021/acscatal.1c03092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the discovery, development, and mechanism of a nickel-catalyzed annulation reaction between o-haloarylimines and electron-poor olefins. The reaction produces two adjacent anti stereocenters and a free secondary amine. Spirocycles are formed from cyclic imines. We characterized the key oxidative addition intermediate and identified a major path leading to competing homocoupling products. The activation energy of oxidative addition and the rate of oxidative addition complex isomerization were determined. The sensitivity of the reaction to reaction conditions was established in a quantitative manner and both the scope and limitations of the method are presented.
Collapse
Affiliation(s)
- Srinivas Kolluru
- Department of Medicinal Chemistry, University of Kansas, Lawrence 66045, Kansas
| | - Manvendra Singh
- Department of Medicinal Chemistry, University of Kansas, Lawrence 66045, Kansas
| | - Bryce Gaskins
- Department of Medicinal Chemistry, University of Kansas, Lawrence 66045, Kansas
| | - Zarko Boskovic
- Department of Medicinal Chemistry, University of Kansas, Lawrence 66045, Kansas
| |
Collapse
|
21
|
Ding X, Liu K, Shi Z. LASER DESORPTION/ABLATION POSTIONIZATION MASS SPECTROMETRY: RECENT PROGRESS IN BIOANALYTICAL APPLICATIONS. MASS SPECTROMETRY REVIEWS 2021; 40:566-605. [PMID: 32770707 DOI: 10.1002/mas.21649] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/07/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Lasers have long been used in the field of mass spectrometric analysis for characterization of condensed matter. However, emission of neutrals upon laser irradiation surpasses the number of ions. Typically, only one in about one million analytes ejected by laser desorption/ablation is ionized, which has fueled the quest for postionization methods enabling ionization of desorbed neutrals to enhance mass spectrometric detection schemes. The development of postionization techniques can be an endeavor that integrates multiple disciplines involving photon energy transfer, electrochemistry, gas discharge, etc. The combination of lasers of different parameters and diverse ion sources has made laser desorption/ablation postionization (LD/API) a growing and lively research community, including two-step laser mass spectrometry, laser ablation atmospheric pressure photoionization mass spectrometry, and those coupled to ambient mass spectrometry. These hyphenated techniques have shown potentials in bioanalytical applications, with major inroads to be made in simultaneous location and quantification of pharmaceuticals, toxins, and metabolites in complex biomatrixes. This review is intended to provide a timely comprehensive view of the broadening bioanalytical applications of disparate LD/API techniques. We also have attempted to discuss these applications according to the classifications based on the postionization methods and to encapsulate the latest achievements in the field of LD/API by highlighting some of the very best reports in the 21st century. © 2020 John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Xuelu Ding
- Department of Pharmaceutical Analysis, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Kun Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Zhenyan Shi
- Department of Pharmaceutical Analysis, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
22
|
Liu J, Yu K, Zhang H, He J, Jiang J, Luo H. Mass spectrometric detection of fleeting neutral intermediates generated in electrochemical reactions. Chem Sci 2021; 12:9494-9499. [PMID: 34349924 PMCID: PMC8278903 DOI: 10.1039/d1sc01385h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/09/2021] [Indexed: 11/23/2022] Open
Abstract
Towards the goal of on-line monitoring of transient neutral intermediates during electrochemical reactions, an electrochemistry-neutral reionization-mass spectrometry (EC-NR-MS) technique was developed in this work. The EC-NR setup consisted of a customized EC flow cell, a sonic spray ionization source, a heating tube, an ion deflector and an electrospray ionization source, which were respectively used for the precise control of the electrochemical reaction, solution nebulization, droplet desolvation, ion deflection and neutral intermediate ionization. Based on the EC-NR-MS approach, some long-sought neutral radicals including TPrA˙, DBAE˙ and TEOA˙, which belong to important reductive intermediates in electrochemiluminescence (ECL) reactions, were successfully identified which helps to clarify the previously unproven ECL reaction mechanism. These findings were also supported by spin-trapping experiments and the tandem MS technique. Accordingly, the EC-NR-MS method provides a direct solution for studying complicated electrochemical reactions, especially for detecting short-lived neutral radicals as well as ionic intermediates. An electrochemistry-neutral reionization-mass spectrometry (EC-NR-MS) technique was developed for on-line studying the long-sought neutral radicals generated in electrochemical reactions.![]()
Collapse
Affiliation(s)
- Jilin Liu
- School of Environment, School of Marine Science and Technology (Weihai), Harbin Institute of Technology Weihai Shandong 150090 China .,State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Harbin Heilongjiang 150090 China.,School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin Heilongjiang 150001 China
| | - Kai Yu
- School of Environment, School of Marine Science and Technology (Weihai), Harbin Institute of Technology Weihai Shandong 150090 China .,State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Harbin Heilongjiang 150090 China
| | - Hong Zhang
- School of Environment, School of Marine Science and Technology (Weihai), Harbin Institute of Technology Weihai Shandong 150090 China .,State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Harbin Heilongjiang 150090 China
| | - Jing He
- School of Environment, School of Marine Science and Technology (Weihai), Harbin Institute of Technology Weihai Shandong 150090 China .,State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Harbin Heilongjiang 150090 China.,School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin Heilongjiang 150001 China
| | - Jie Jiang
- School of Environment, School of Marine Science and Technology (Weihai), Harbin Institute of Technology Weihai Shandong 150090 China .,State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Harbin Heilongjiang 150090 China.,School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin Heilongjiang 150001 China
| | - Hai Luo
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| |
Collapse
|
23
|
Oliveira LFC, de Morais DR, Correa DN, de Morais Campêlo J, Sussulini A, Eberlin MN, Santos JM. Rapid and direct detection of artificially aged papers employing easy ambient sonic-spray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9046. [PMID: 33434951 DOI: 10.1002/rcm.9046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/22/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
RATIONALE The effort to make fake documents look real leads to the use of crickets and beverages to produce artificially aged papers, as land titles, based on yellowing caused by the use of these methods. An old practice in Brazil, called "cricketing", has led to the misappropriation of Brazilian land using these documents. We propose a rapid, simple, instantaneous and non-destructive method to identify artificially aged papers by easy ambient sonic-spray ionization mass spectrometry (EASI-MS) analysis. METHODS Three typical aging procedures were used to obtain artificially aged papers using coffee, cola drink, and crickets, with the papers being analyzed by EASI-MS. Multivariate statistical analyses were performed on the data to find the sample groups and to study the most relevant ions of each ageing procedure. High-resolution MS (HRMS) was used to obtain the exact masses and attribute formulae to relevant ions present in the samples. RESULTS The combination of EASI-MS and multivariate statistical analyses allowed us to identify the most relevant ions to classify the adulteration of documents and HRMS identified most of these relevant ions. TMS fingerprinting in combination with multivariate analysis also demonstrated that this approach can qualitatively differentiate all the examined paper samples. CONCLUSIONS We developed a cheap, fast and easy method that can help to elucidate counterfeit documents that have been artificially aged, helping to identify chemical additives and one that can be used in forensic laboratories.
Collapse
Affiliation(s)
- Luan Felipe Campos Oliveira
- ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas-UNICAMP, Campinas, SP, 13083-970, Brazil
- LaBIOmics, Department of Analytical Chemistry, Institute of Chemistry, University of Campinas-UNICAMP, Campinas, SP, 13083-970, Brazil
| | - Damila Rodrigues de Morais
- ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas-UNICAMP, Campinas, SP, 13083-970, Brazil
| | - Deleon Nascimento Correa
- ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas-UNICAMP, Campinas, SP, 13083-970, Brazil
- Technical-Scientific Police Superintendency, Criminalistic Institute Dr. Octávio Eduardo de Brito Alvarenga -IC-SPTC-SP, São Paulo, SP, 05507-060, Brazil
| | | | - Alessandra Sussulini
- LaBIOmics, Department of Analytical Chemistry, Institute of Chemistry, University of Campinas-UNICAMP, Campinas, SP, 13083-970, Brazil
| | - Marcos Nogueira Eberlin
- ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas-UNICAMP, Campinas, SP, 13083-970, Brazil
- Mackenzie Presbyterian University, São Paulo, SP, 01302-907, Brazil
| | - Jandyson Machado Santos
- ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas-UNICAMP, Campinas, SP, 13083-970, Brazil
- Department of Chemistry, Federal Rural University of Pernambuco-UFRPE, Recife, PE, 52171-900, Brazil
| |
Collapse
|
24
|
Gao H, Lin J, Jia X, Zhao Y, Wang S, Bai H, Ma Q. Real-time authentication of animal species origin of leather products using rapid evaporative ionization mass spectrometry and chemometric analysis. Talanta 2021; 225:122069. [PMID: 33592787 DOI: 10.1016/j.talanta.2020.122069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 12/18/2022]
Abstract
Increasing accounts of fraud and persistent labeling problems have brought the authenticity of leather products into question. In this study, we developed an extremely simplified workflow for real-time, in situ, and unambiguous authentication of leather samples using rapid evaporative ionization mass spectrometry (REIMS) coupled with an electric soldering iron. Initially, authentic leather samples from cattle, sheep, pig, deer, ostrich, crocodile, and snake were used to create a chemometric model based on principal component analysis and linear discriminant analysis algorithms. The validated multivariate statistical model was then used to analyze and generate live classifications of commercial leather samples. In addition to REIMS analysis, the microstructures of leathers were characterized by scanning electron microscopy to provide complementary information. The current study is expected to provide a high-throughput tool with superior efficiency and accuracy for authenticating the identity of leathers and other consumer products of biogenic origin.
Collapse
Affiliation(s)
- Haiyan Gao
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China; Inner Mongolia Autonomous Region Institute of Product Quality Inspection, Huhhot 010070, China
| | - Jihong Lin
- Waters Corporation, Beijing 100176, China
| | | | - Yang Zhao
- National Quality Supervision and Testing Center for Leather Products, Beijing 100015, China
| | - Songying Wang
- Inner Mongolia Autonomous Region Institute of Product Quality Inspection, Huhhot 010070, China
| | - Hua Bai
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| |
Collapse
|
25
|
Oliveira GHC, Ramos LM, de Paiva RKC, Passos STA, Simões MM, Machado F, Correa JR, Neto BAD. Synthetic enzyme-catalyzed multicomponent reaction for Isoxazol-5(4 H)-one Syntheses, their properties and biological application; why should one study mechanisms? Org Biomol Chem 2021; 19:1514-1531. [PMID: 33332518 DOI: 10.1039/d0ob02114h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this work, we describe the application of a synthetic enzyme (synzyme) as the catalyst to promote the multicomponent synthesis of isoxazol-5(4H)-one derivatives. The catalytic system could be used up to 15 times without any notable loss of its activity. Some derivatives showed fluorescence and their photophysical data were evaluated. The mechanism of the reaction was, for the first time, investigated and, among the three reaction pathway possibilities, only one was operating under the developed conditions. ESI-MS(/MS) allowed for both the simultaneous monitoring of the multicomponent reaction (MCR) and the proposition of a kinetic model to explain the transformation. The kinetic model pointed firmly to only one reaction pathway and helped to discard the other two possibilities. The antimicrobial abilities of all synthesized derivatives against Gram-positive and Gram-negative strains were also evaluated. The abilities of functional chromophores (fluorescent compounds) as live cell-imaging probes were verified and one of the multicomponent adducts could stain early endosomes selectively in bioimaging experiments.
Collapse
Affiliation(s)
- Gabriela H C Oliveira
- Laboratório de Química Medicinal e Síntese Orgânica (LaQuiMeSO), Câmpus de Ciências Exatas e Tecnológicas, Universidade Estadual de Goiás, CP 459, Anápolis-GO, Brazil.
| | - Luciana M Ramos
- Laboratório de Química Medicinal e Síntese Orgânica (LaQuiMeSO), Câmpus de Ciências Exatas e Tecnológicas, Universidade Estadual de Goiás, CP 459, Anápolis-GO, Brazil.
| | - Raíssa K C de Paiva
- Laboratório de Química Medicinal e Síntese Orgânica (LaQuiMeSO), Câmpus de Ciências Exatas e Tecnológicas, Universidade Estadual de Goiás, CP 459, Anápolis-GO, Brazil.
| | - Saulo T A Passos
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitario Darcy Ribeiro, Brasília, Distrito Federal 70904-900, Brazil.
| | - Marina M Simões
- Laboratório de Microscopia e Microanálise, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| | - Fabricio Machado
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitario Darcy Ribeiro, Brasília, Distrito Federal 70904-900, Brazil. and School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - José R Correa
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitario Darcy Ribeiro, Brasília, Distrito Federal 70904-900, Brazil. and Laboratório de Microscopia e Microanálise, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| | - Brenno A D Neto
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitario Darcy Ribeiro, Brasília, Distrito Federal 70904-900, Brazil.
| |
Collapse
|
26
|
Rüger CP, Neumann A, Sklorz M, Zimmermann R. Atmospheric Pressure Single Photon Laser Ionization (APSPLI) Mass Spectrometry Using a 157 nm Fluorine Excimer Laser for Sensitive and Selective Detection of Non- to Semipolar Hydrocarbons. Anal Chem 2021; 93:3691-3697. [DOI: 10.1021/acs.analchem.0c04740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christopher P. Rüger
- Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany
- Department Life, Light & Matter (LLM), University of Rostock, 18051 Rostock, Germany
| | - Anika Neumann
- Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany
- Department Life, Light & Matter (LLM), University of Rostock, 18051 Rostock, Germany
| | - Martin Sklorz
- Joint Mass Spectrometry Centre, Cooperation Group “Comprehensive Molecular Analytics” (CMA), Helmholtz Zentrum München (HMGU), 85764 Neuherberg, Germany
| | - Ralf Zimmermann
- Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany
- Department Life, Light & Matter (LLM), University of Rostock, 18051 Rostock, Germany
- Joint Mass Spectrometry Centre, Cooperation Group “Comprehensive Molecular Analytics” (CMA), Helmholtz Zentrum München (HMGU), 85764 Neuherberg, Germany
| |
Collapse
|
27
|
Rodrigues MO, Eberlin MN, Neto BAD. How and Why to Investigate Multicomponent Reactions Mechanisms? A Critical Review. CHEM REC 2021; 21:2762-2781. [PMID: 33538117 DOI: 10.1002/tcr.202000165] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/04/2021] [Indexed: 01/03/2023]
Abstract
We review the most innovative efforts and greatest challenges faced when elucidating multicomponent reactions (MCRs) mechanisms. When compared to traditional reactions, the often two or more concurrent reactions pathways and the greater number of possible intermediates in MCRs turn their mechanistic investigation both a harder and trickier task. The common approaches used to investigate reaction mechanisms are often unable to clarify MCRs mechanisms; hence few but clever approaches are currently used to determine these mechanisms and to depict their key transformations. Their complexity has required most innovative approaches and the use of a number of unique techniques that have shed light over the favored pathway selected from the myriad of alternatives theoretically available for MCRs. This review focuses on the most successful efforts applied by a few leading groups to perform these puzzlingly investigations.
Collapse
Affiliation(s)
- Marcelo O Rodrigues
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, 70904-970, Brazil.,School of Physics and Astronomy, Nottingham University, NG72RD, Nottingham, U.K
| | - Marcos N Eberlin
- MackMass Laboratory, PPGENM, School of Engineering, Mackenzie Presbyterian University, São Paulo, SP, 01302-907, Brazil
| | - Brenno A D Neto
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, 70904-970, Brazil
| |
Collapse
|
28
|
Rodrigues MF, Pereira I, Morais RL, Lobón GS, Gil EDS, Vaz BG. A New Strategy for the Analysis of Steroid Hormones in Industrial Wastewaters by Paper Spray Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2250-2257. [PMID: 32930580 DOI: 10.1021/jasms.0c00145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A new approach using paper spray ionization mass spectrometry (PSI-MS) for the analysis of steroid hormones in wastewater samples has been demonstrated. Triangular papers containing paraffin barriers as microfluidic channels were used to direct the sample solution to the paper tip, preventing the sample from spreading over the corners of the paper. The method was used to analyze the hormones levonorgestrel and algestone acetophenide in industrial wastewaters. Analytical curves presented a correlation coefficient (R2) above 0.99. Limits of quantification were below 2.3 ppm and limits of detection below 0.7 ppm. Values of precision (coefficient of variation) and accuracy (relative error) were less than 15% for all analyses. Recovery results ranged from 82% to 102%. Levonorgestrel was also analyzed by high-performance liquid chromatography coupled to mass spectrometry in order to compare the analytical performance with PSI-MS. No statistically significant differences were found between both methods. This study demonstrates the usefulness of PSI-MS for rapid analysis of hormones in industrial wastewater samples and also indicates its potential to be employed as a simple and reliable analytical method in environmental sciences.
Collapse
Affiliation(s)
| | - Igor Pereira
- Chemistry Institute, Federal University of Goiás, Goiânia 74690900, Brazil
| | - Ruiter Lima Morais
- Faculty of Pharmacy, Federal University of Goiás, Goiânia 74690900, Brazil
| | - Gérman Sanz Lobón
- Chemistry Institute, Federal University of Goiás, Goiânia 74690900, Brazil
| | - Eric de Souza Gil
- Faculty of Pharmacy, Federal University of Goiás, Goiânia 74690900, Brazil
| | - Boniek Gontijo Vaz
- Chemistry Institute, Federal University of Goiás, Goiânia 74690900, Brazil
| |
Collapse
|
29
|
Analytical Chemistry in the 21st Century: Challenges, Solutions, and Future Perspectives of Complex Matrices Quantitative Analyses in Biological/Clinical Field. ANALYTICA 2020. [DOI: 10.3390/analytica1010006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nowadays, the challenges in analytical chemistry, and mostly in quantitative analysis, include the development and validation of new materials, strategies and procedures to meet the growing need for rapid, sensitive, selective and green methods. In this context, considering the constantly updated International Guidelines, constant innovation is mandatory both in the pre-treatment procedures and in the instrumental configurations to obtain reliable, true, and reproducible information. In this context, additionally to the classic plasma (or serum) matrices, biopsies, whole blood, and urine have seen an increase in the works that also consider non-conventional matrices. Obviously, all these studies have shown that there is a correlation between the blood levels and those found in the new matrix, in order to be able to correlate and compare the results in a robust way and reduce any bias problems. This review provides an update of the most recent developments currently in use in the sample pre-treatment and instrument configurations in the biological/clinical fields. Furthermore, the review concludes with a series of considerations regarding the role and future developments of Analytical Chemistry in light of the forthcoming challenges and new goals to be achieved.
Collapse
|
30
|
Beneito-Cambra M, Gilbert-López B, Moreno-González D, Bouza M, Franzke J, García-Reyes JF, Molina-Díaz A. Ambient (desorption/ionization) mass spectrometry methods for pesticide testing in food: a review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4831-4852. [PMID: 33000770 DOI: 10.1039/d0ay01474e] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Ambient mass spectrometry refers to the family of techniques that allows ions to be generated from condensed phase samples under ambient conditions and then, collected and analysed by mass spectrometry. One of their key advantages relies on their ability to allow the analysis of samples with minimal to no sample workup. This feature maps well to the requirements of food safety testing, in particular, those related to the fast determination of pesticide residues in foods. This review discusses the application of different ambient ionization methods for the qualitative and (semi)quantitative determination of pesticides in foods, with the focus on different specific methods used and their ionization mechanisms. More popular techniques used are those commercially available including desorption electrospray ionization (DESI-MS), direct analysis on real time (DART-MS), paper spray (PS-MS) and low-temperature plasma (LTP-MS). Several applications described with ambient MS have reported limits of quantitation approaching those of reference methods, typically based on LC-MS and generic sample extraction procedures. Some of them have been combined with portable mass spectrometers thus allowing "in situ" analysis. In addition, these techniques have the ability to map surfaces (ambient MS imaging) to unravel the distribution of agrochemicals on crops.
Collapse
Affiliation(s)
- Miriam Beneito-Cambra
- Analytical Chemistry Research Group (FQM-323), Department of Physical and Analytical Chemistry, University of Jaen, 23071 Jaén, Spain.
| | | | | | | | | | | | | |
Collapse
|
31
|
Li B, Kong J, Zhang L, Fu W, Zhang Z, Li C. The ionization process of chemical warfare agent simulants in low temperature plasma ionization. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2020; 26:341-350. [PMID: 32819167 DOI: 10.1177/1469066720951943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The application of low-temperature plasma ionization technology in the chemical warfare agent detection was mostly focused on the research of rapid detection methods. Limited studies are available on the ionization process of chemical warfare agents in low temperature plasma. Through the intensity of protonated molecules of dimethyl methylphosphonate (DMMP) in different solvents including methanol, deuterated methanol (methanol-D4), pure water, and deuterium oxide (water-D2), it was concluded that the water molecule in the air provides the hydrogen ion (H+) needed for ionization. The product ion spectra and the collision-induced dissociation processes of protonated molecules of nerve agent simulants, including DMMP, diethyl methanephosphonate (DEMP), trimethyl phosphate (TMP), triethyl phosphate (TEP), tripropyl phosphate (TPP), and tributyl phosphate (TBP) were analyzed. Results revealed that H+ mostly combined with phosphorus oxygen double bond (P = O) in the low-temperature plasma ionization. By analyzing the peak intensity distribution of product ions of protonated molecules, the presence of proton and charge migration in the low temperature plasma ionization and collision-induced dissociation were researched. This study could provide technical guidance for the rapid and accurate detection of chemical warfare agents through low temperature plasma ionization-mass spectrometry.
Collapse
Affiliation(s)
- Baoqiang Li
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Jinglin Kong
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Lin Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Wenxiang Fu
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Zhongyao Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Cuiping Li
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| |
Collapse
|
32
|
Desorption atmospheric pressure chemical ionization: A review. Anal Chim Acta 2020; 1130:146-154. [DOI: 10.1016/j.aca.2020.05.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 01/27/2023]
|
33
|
Cody RB, Fouquet TNJ, Takei C. Thermal desorption and pyrolysis direct analysis in real time mass spectrometry for qualitative characterization of polymers and polymer additives. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 2:e8687. [PMID: 31797453 DOI: 10.1002/rcm.8687] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE Direct analysis in real time mass spectrometry (DART-MS) provides qualitative information about additives and polymer composition. However, the observed mass spectra are dependent on sampling conditions, in particular the DART gas temperature. This report describes the combination of a heated sample stage with DART-MS for polymer characterization. METHODS Industrial polymers with different compositions were examined by thermal desorption and pyrolysis (TDPy) DART. Samples were heated on disposable copper stages from ambient temperature to 600°C, and the evolved gases were introduced directly into a DART ion source through a glass tee. Time- and temperature-dependent mass spectra were acquired using a high-resolution time-of-flight mass spectrometer. Kendrick mass analysis was applied to the interpretation of complex mass spectra observed for fluorinated polymers. RESULTS Positive-ion DART mass spectra of common polymers exhibited peak series differing by monomer masses, often accompanied by a peak corresponding to the protonated monomer. Even polymers that did not exhibit a clear series of peaks produced characteristic mass spectra. Positive-ion and negative-ion mass spectra were recorded for fluorinated polymers, with polytetrafluoroethylene (PTFE) producing only negative ions. Thermal desorption provided characteristic temperature profiles for volatile species such as polymer additives and polymer pyrolysis products. CONCLUSIONS In comparison with direct analysis by positioning sample directly in the heated DART gas stream, TDPy DART provides a more versatile sampling method and provides thermal separation and profiling of polymer additives, intact short polymer chains, and pyrolysis fragments.
Collapse
Affiliation(s)
| | - Thierry N J Fouquet
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Chikako Takei
- Biochromato Inc., 1-12-19 Honcho, Fujisawa, Kanagawa-ken, Japan
| |
Collapse
|
34
|
Frey BS, Damon DE, Badu-Tawiah AK. Emerging trends in paper spray mass spectrometry: Microsampling, storage, direct analysis, and applications. MASS SPECTROMETRY REVIEWS 2020; 39:336-370. [PMID: 31491055 PMCID: PMC7875099 DOI: 10.1002/mas.21601] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/22/2019] [Indexed: 05/20/2023]
Abstract
Recent advancements in the sensitivity of chemical instrumentation have led to increased interest in the use of microsamples for translational and biomedical research. Paper substrates are by far the most widely used media for biofluid collection, and mass spectrometry is the preferred method of analysis of the resultant dried blood spot (DBS) samples. Although there have been a variety of review papers published on DBS, there has been no attempt to unify the century old DBS methodology with modern applications utilizing modified paper and paper-based microfluidics for sampling, storage, processing, and analysis. This critical review will discuss how mass spectrometry has expanded the utility of paper substrates from sample collection and storage, to direct complex mixture analysis to on-surface reaction monitoring.
Collapse
Affiliation(s)
- Benjamin S Frey
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210
| | - Deidre E Damon
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210
| | - Abraham K Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210
| |
Collapse
|
35
|
Perraud V, Li X, Smith JN, Finlayson-Pitts BJ. Novel ionization reagent for the measurement of gas-phase ammonia and amines using a stand-alone atmospheric pressure gas chromatography (APGC) source. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8561. [PMID: 31429122 DOI: 10.1002/rcm.8561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE Contaminants present in ambient air or in sampling lines can interfere with the target analysis through overlapping peaks or causing a high background. This study presents a positive outcome from the unexpected presence of N-methyl-2-pyrrolidone, released from a PALL HEPA filter, in the analysis of atmospherically relevant gas-phase amines using chemical ionization mass spectrometry. METHODS Gas-phase measurements were performed using a triple quadrupole mass spectrometer equipped with a modified atmospheric pressure gas chromatography (APGC) source which allows sampling of the headspace above pure amine standards. Gas-phase N-methyl-2-pyrrolidone (NMP) emitted from a PALL HEPA filter located in the inlet stream served as the ionizing agent. RESULTS This study demonstrates that some alkylamines efficiently form a [NMP + amine+H]+ cluster with NMP upon chemical ionization at atmospheric pressure. The extent of cluster formation depends largely on the proton affinity of the amine compared with that of NMP. Aromatic amines (aniline, pyridine) and diamines (putrescine) were shown not to form cluster ions with NMP. CONCLUSIONS The use of NMP as an ionizing agent with stand-alone APGC provided high sensitivity for ammonia and the smaller amines. The main advantages, in addition to sensitivity, are direct sampling into the APGC source and avoiding uptake on sampling lines which can be a significant problem with ammonia and amines.
Collapse
Affiliation(s)
- Véronique Perraud
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | - Xiaoxiao Li
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | - James N Smith
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | | |
Collapse
|
36
|
Lin J, Yan J, Xu Q, Wang X. Study on properties of wooden capillary electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8600. [PMID: 31756782 DOI: 10.1002/rcm.8600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/15/2019] [Accepted: 07/28/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE In view of the unique properties of wooden materials as electrospray emitters, a novel wooden capillary electrospray ionization (WC-ESI) device was fabricated. The performance of a wooden capillary as an electrospray emitter was investigated by using a wooden capillary instead of the metal emitter of commercial ESI sources. METHODS The mass spectrometric measurement of baicalein, emodin and myoglobin was carried out by using wooden capillary (WC) and metal capillary (MC) ESI sources. Contrasting analysis of signal intensity between WC and MC electrospray ionization mass spectrometry (ESI-MS) was implemented at different sample flow rates. The effect of WC-ESI-MS and MC-ESI-MS was evaluated experimentally with electrospray solutions in different solvent ratios. RESULTS Generally, the signal generated by WC-ESI-MS was much stronger than that obtained by MC-ESI-MS. In particular, the MS signal in negative ion mode was very strong, which may solve the long-standing problem of low MS signals in negative ion mode, and fully improve the detection efficiency of ESI-MS. CONCLUSIONS The signal intensity produced by WC-ESI-MS is significantly higher than that from MC-ESI-MS, and polymerization and electrolysis are reduced; therefore, the spectra become simpler. In addition, it is also tolerant to high flow rates and high aqueous phase samples.
Collapse
Affiliation(s)
- Jiadi Lin
- Heilongjiang University of Chinese Medicine, Harbin, 150040, P. R. China
| | - Jing Yan
- Heilongjiang University of Chinese Medicine, Harbin, 150040, P. R. China
| | - Qingxuan Xu
- Crop Research Institute, Heilongjiang University, Harbin, 150080, P. R. China
| | - Xiwei Wang
- Crop Research Institute, Heilongjiang University, Harbin, 150080, P. R. China
| |
Collapse
|
37
|
Fast screening of trace multiresidue pesticides on fruit and vegetable surfaces using ambient ionization tandem mass spectrometry. Anal Chim Acta 2020; 1102:63-71. [DOI: 10.1016/j.aca.2019.12.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/12/2019] [Accepted: 12/15/2019] [Indexed: 01/20/2023]
|
38
|
|
39
|
Iyer K, Marsh BM, Capek GO, Schrader RL, Tichy S, Cooks RG. Ion Manipulation in Open Air Using 3D-Printed Electrodes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2584-2593. [PMID: 31713174 DOI: 10.1007/s13361-019-02307-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
Ambient ionization techniques provide a way to sample materials via creation of ions in the air. However, transferring and focusing of these ions is typically done in the reduced pressure environment of the mass spectrometer. Spray-based ambient ionization sources require relatively large distances between the source and mass spectrometer inlet for effective desolvation, resulting in a small fraction of the ions being collected. To increase the efficiency of ion transfer from atmosphere to vacuum, 3D-printed focusing devices made of conductive carbon nanotube doped polymers have been designed and evaluated for ion focusing in air. Three main classes of electrodes are considered: (i) conic section electrodes (conical, ellipsoidal, and cylindrical), (ii) simple conductive and non-conductive apertures, and (iii) electrodes with complex geometries (straight, chicane, and curved). Simulations of ion trajectories performed using the statistical diffusion simulation (SDS) model in SIMION showed a measure of agreement with experiment. Cross-sectional images of ion beams were captured using an ion detecting charge-coupled device (IonCCD). After optimization, the best arrangements of electrodes were coupled to an Agilent Ultivo triple quadrupole to record mass spectra. Observations suggest that electrode geometry strongly influences ion trajectories in air. Non-conductive electrodes also assisted in focusing, due to charge buildup from ion deposition. We also observed minimal spreading of the ion packet after exiting the focusing electrodes indicating that atmospheric collisions do not reduce collimation of the beam. The study suggests that high pressures need not be viewed as a hindrance to ion transport, but as a potentially useful force.
Collapse
Affiliation(s)
- Kiran Iyer
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Brett M Marsh
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Grace O Capek
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Robert L Schrader
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Shane Tichy
- Agilent Technologies, 5301 Stevens Creek Blvd, Santa Clara, CA, 95051, USA.
| | - R Graham Cooks
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
40
|
Ogrinc N, Saudemont P, Balog J, Robin YM, Gimeno JP, Pascal Q, Tierny D, Takats Z, Salzet M, Fournier I. Water-assisted laser desorption/ionization mass spectrometry for minimally invasive in vivo and real-time surface analysis using SpiderMass. Nat Protoc 2019; 14:3162-3182. [PMID: 31597965 DOI: 10.1038/s41596-019-0217-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 06/14/2019] [Indexed: 11/09/2022]
Abstract
Rapid, sensitive, precise and accurate analysis of samples in their native in vivo environment is critical to better decipher physiological and physiopathological mechanisms. SpiderMass is an ambient mass spectrometry (MS) system designed for mobile in vivo and real-time surface analyses of biological tissues. The system uses a fibered laser, which is tuned to excite the most intense vibrational band of water, resulting in a process termed water-assisted laser desorption/ionization (WALDI). The water molecules act as an endogenous matrix in a matrix-assisted laser desorption ionization (MALDI)-like scenario, leading to the desorption/ionization of biomolecules (lipids, metabolites and proteins). The ejected material is transferred to the mass spectrometer through an atmospheric interface and a transfer line that is several meters long. Here, we formulate a three-stage procedure that includes (i) a laser system setup coupled to a Waters Q-TOF or Thermo Fisher Q Exactive mass analyzer, (ii) analysis of specimens and (iii) data processing. We also describe the optimal setup for the analysis of cell cultures, fresh-frozen tissue sections and in vivo experiments on skin. With proper optimization, the system can be used for a variety of different targets and applications. The entire procedure takes 1-2 d for complex samples.
Collapse
Affiliation(s)
- Nina Ogrinc
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Villeneuve d'Ascq, France
| | - Philippe Saudemont
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Villeneuve d'Ascq, France
- SATT-Nord, Immeuble Central Gare, Lille, France
| | - Julia Balog
- Department of Surgery and Cancer, St Mary's Hospital, Imperial College London, London, UK
| | - Yves-Marie Robin
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Villeneuve d'Ascq, France
- Unité de Pathologie Morphologique et Moléculaire, Centre Oscar Lambret, Lille, France
| | - Jean-Pascal Gimeno
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Villeneuve d'Ascq, France
| | - Quentin Pascal
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Villeneuve d'Ascq, France
- OCR (Oncovet Clinical Research), Eurasanté, Loos, France
| | - Dominique Tierny
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Villeneuve d'Ascq, France
- OCR (Oncovet Clinical Research), Eurasanté, Loos, France
| | - Zoltan Takats
- Department of Surgery and Cancer, St Mary's Hospital, Imperial College London, London, UK
| | - Michel Salzet
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Villeneuve d'Ascq, France.
| | - Isabelle Fournier
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Villeneuve d'Ascq, France.
| |
Collapse
|
41
|
Suntornsuk W, Suntornsuk L. Recent applications of paper‐based point‐of‐care devices for biomarker detection. Electrophoresis 2019; 41:287-305. [DOI: 10.1002/elps.201900258] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/30/2019] [Accepted: 10/05/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Worapot Suntornsuk
- Department of Microbiology, Faculty of ScienceKing Mongkut's University of Technology Thonburi Bangkok Thailand
| | - Leena Suntornsuk
- Department of Pharmaceutical ChemistryFaculty of PharmacyMahidol University Bangkok Thailand
| |
Collapse
|
42
|
da Silva LC, de Carvalho TC, Pereira I, Marana JC, Laviola BG, Abdelnur PV, Vaz BG. Molecularly Imprinted Polymer-Coated Probe Electrospray Ionization Mass Spectrometry Determines Phorbol Esters and Deoxyphorbol Metabolites in Jatropha curcas Leaves. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2051-2059. [PMID: 31342263 DOI: 10.1007/s13361-019-02269-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 05/07/2019] [Accepted: 06/09/2019] [Indexed: 06/10/2023]
Abstract
In this study, a molecularly imprinted polymer-coated probe electrospray ionization mass spectrometry (MIPCPESI-MS) method was developed for detection of phorbol esters (PEs) and deoxyphorbol metabolites in Jatropha curcas leaves. Such an approach was established by sticking on a metallic needle a molecularly imprinted polymer to particularly design a MIP-coated probe for selective sampling and ionization of PEs and deoxyphorbol metabolites. By a subsequent application of a high voltage and methanol, as spray solvent, ESI was generated for direct and rapid analysis under ambient and open-air conditions. MIP-coated probe exhibited a high sampling capacity of the PEs and its metabolites in methanolic extracts of J. curcas leaves compared with the non-imprinted polymer (NIP)-coated probe. MIPCPESI-MS allowed the detection of phorbol 12,13-diacetate (PDA) from J. curcas leaves with minimal sample preparation, and with detection limit and quantification reaching 0.28 μg/mL and 0.92 μg/mL, respectively. Also, good linearity was obtained with R2 > 0.99 and precision and accuracy values between 4.06-13.49% and - 1.60 to - 15.26%, respectively. The current method was successfully applied to screening methanolic extracts of six different J. curcas leaf genotypes (three toxic and three non-toxic). PDA and three PE deoxyphorbol metabolites were identified only from toxic genotypes, in which PDA was determined with concentration ranging from 222.19 ± 23.55 to 528.23 ± 19.72 μg/g. All these findings support that the MIPCPESI-MS method developed here has a high potential for the analysis of PEs in plant extracts enabling differentiation of toxic and non-toxic genotypes earlier in the leaves.
Collapse
Affiliation(s)
- Lidya C da Silva
- Laboratory of Chromatography and Mass Spectrometry (LaCEM), Chemistry Institute, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil
| | - Thays C de Carvalho
- Laboratory of Chromatography and Mass Spectrometry (LaCEM), Chemistry Institute, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil
| | - Igor Pereira
- Laboratory of Chromatography and Mass Spectrometry (LaCEM), Chemistry Institute, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil
| | - Julio Cesar Marana
- Embrapa Agroenergy, Brazilian Agricultural Research Company, Brasília, DF, 70770-901, Brazil
| | - Bruno G Laviola
- Embrapa Agroenergy, Brazilian Agricultural Research Company, Brasília, DF, 70770-901, Brazil
| | - Patricia V Abdelnur
- Embrapa Agroenergy, Brazilian Agricultural Research Company, Brasília, DF, 70770-901, Brazil
| | - Boniek G Vaz
- Laboratory of Chromatography and Mass Spectrometry (LaCEM), Chemistry Institute, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| |
Collapse
|
43
|
Taranto V, Ueland M, Forbes SL, Blanes L. The analysis of nitrate explosive vapour samples using Lab-on-a-chip instrumentation. J Chromatogr A 2019; 1602:467-473. [DOI: 10.1016/j.chroma.2019.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 05/29/2019] [Accepted: 06/02/2019] [Indexed: 01/08/2023]
|
44
|
Jing W, Zhou Y, Wang J, Ni M, Bi W, Chen DDY. Dispersive Magnetic Solid-Phase Extraction Coupled to Direct Analysis in Real Time Mass Spectrometry for High-Throughput Analysis of Trace Environmental Contaminants. Anal Chem 2019; 91:11240-11246. [PMID: 31373488 DOI: 10.1021/acs.analchem.9b02197] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Coupling dispersive magnetic solid-phase extraction (DMSPE) to direct analysis in real time mass spectrometry (DART-MS) with a newly developed metal iron probe enables high-throughput, sensitive detection of herbicides such as triazine in environmental waters. Magnetic graphene oxide was used as a dispersive sorbent because it increased adsorption capacity in the DMSPE process. The planar structure and excellent thermal conductivity of graphene oxide facilitated the desorption and ionization of target analytes in DART-MS analysis. The iron probe, which is designed to fit into the moving trail of the DART interface, served as the sorbent collector as well as the support for the magnetic graphene oxide after DMSPE, and was put directly into the DART system. The ratio of magnetic core to graphene oxide in the nanoparticles and other key parameters in DMSPE and DART-MS procedures were systematically investigated and optimized. In addition, the presence of water on the sorbent proves to have a significant effect on DART-MS analysis. No organic solvents are used in this method, and the reusable iron probe is of low cost. Under the optimal conditions, limits of detection were found in the range of 1.6-152.1 ng/L for the triazines. Recovery and reproducibility were found to be in the ranges of 87.5-115.0% and 1.9-10.2%, respectively, for the six herbicides studied. The analytical performance of the DMSPE-DART-MS method indicated that applications for trace analysis of other compounds in liquid samples are also possible.
Collapse
Affiliation(s)
- Wenqiang Jing
- College of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China.,Department of Chemistry , University of British Columbia , Vancouver , British Columbia V6T 1Z1 , Canada
| | - Yanying Zhou
- College of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Jiaqin Wang
- College of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Miao Ni
- College of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Wentao Bi
- College of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - David Da Yong Chen
- Department of Chemistry , University of British Columbia , Vancouver , British Columbia V6T 1Z1 , Canada
| |
Collapse
|
45
|
Iacobucci C, Suder P, Bodzon‐Kulakowska A, Antolak A, Silberring J, Smoluch M, Mielczarek P, Grasso G, Pawlaczyk A, Szynkowska MI, Tuccitto N, Stefanowicz P, Szewczuk Z, Natale G. Instrumentation. Mass Spectrom (Tokyo) 2019. [DOI: 10.1002/9781119377368.ch4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
46
|
Affiliation(s)
- Vladimir Peters
- Department of Process Engineering, University of Offenburg, Offenburg, Germany
| | - Bernd Spangenberg
- Department of Process Engineering, University of Offenburg, Offenburg, Germany
| |
Collapse
|
47
|
Feider CL, Krieger A, DeHoog RJ, Eberlin LS. Ambient Ionization Mass Spectrometry: Recent Developments and Applications. Anal Chem 2019; 91:4266-4290. [PMID: 30790515 PMCID: PMC7444024 DOI: 10.1021/acs.analchem.9b00807] [Citation(s) in RCA: 278] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Clara L. Feider
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Anna Krieger
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Rachel J. DeHoog
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Livia S. Eberlin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
48
|
Bierstedt A, You Y, van Wasen S, Bosc-Bierne G, Weller M, Riedel J. Laser-Induced Microplasma as an Ambient Ionization Approach for the Mass-Spectrometric Analysis of Liquid Samples. Anal Chem 2019; 91:5922-5928. [DOI: 10.1021/acs.analchem.9b00329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andreas Bierstedt
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Yi You
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Sebastian van Wasen
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Gaby Bosc-Bierne
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Michael Weller
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Jens Riedel
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| |
Collapse
|
49
|
Pu F, Alfaro CM, Pirro V, Xie Z, Ouyang Z, Cooks RG. Rapid determination of isocitrate dehydrogenase mutation status of human gliomas by extraction nanoelectrospray using a miniature mass spectrometer. Anal Bioanal Chem 2019; 411:1503-1508. [PMID: 30710208 PMCID: PMC6450702 DOI: 10.1007/s00216-019-01632-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/08/2019] [Accepted: 01/18/2019] [Indexed: 12/17/2022]
Abstract
Isocitrate dehydrogenase (IDH) I and II mutations in gliomas cause an abnormal accumulation of 2-hydroxyglutarate (2-HG) in these tumor cells. These mutations have potential prognostic value in that knowledge of the mutation status can lead to improved surgical resection. Information on mutation status obtained by immunohistochemistry or genomic analysis is not available during surgery. We report a rapid extraction nanoelectrospray ionization (nESI) method of determining 2-HG. This should allow the determination of IDH mutation status to be performed intraoperatively, within minutes, using a miniature mass spectrometer. This study demonstrates that the combination of tandem mass spectrometry with low-resolution mass spectrometry allows this analysis to be performed with confidence. Graphical Abstract.
Collapse
Affiliation(s)
- Fan Pu
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Clint M Alfaro
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Valentina Pirro
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Zhuoer Xie
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Zheng Ouyang
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
- Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - R Graham Cooks
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
50
|
Simple interface for scanning chemical compounds on developed thin layer chromatography plates using electrospray ionization mass spectrometry. Anal Chim Acta 2019; 1049:1-9. [DOI: 10.1016/j.aca.2018.10.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/15/2018] [Accepted: 10/19/2018] [Indexed: 11/17/2022]
|