1
|
Li S, Zhang H, Zhu M, Kuang Z, Li X, Xu F, Miao S, Zhang Z, Lou X, Li H, Xia F. Electrochemical Biosensors for Whole Blood Analysis: Recent Progress, Challenges, and Future Perspectives. Chem Rev 2023. [PMID: 37262362 DOI: 10.1021/acs.chemrev.1c00759] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Whole blood, as one of the most significant biological fluids, provides critical information for health management and disease monitoring. Over the past 10 years, advances in nanotechnology, microfluidics, and biomarker research have spurred the development of powerful miniaturized diagnostic systems for whole blood testing toward the goal of disease monitoring and treatment. Among the techniques employed for whole-blood diagnostics, electrochemical biosensors, as known to be rapid, sensitive, capable of miniaturization, reagentless and washing free, become a class of emerging technology to achieve the target detection specifically and directly in complex media, e.g., whole blood or even in the living body. Here we are aiming to provide a comprehensive review to summarize advances over the past decade in the development of electrochemical sensors for whole blood analysis. Further, we address the remaining challenges and opportunities to integrate electrochemical sensing platforms.
Collapse
Affiliation(s)
- Shaoguang Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hongyuan Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Man Zhu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhujun Kuang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xun Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Siyuan Miao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zishuo Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hui Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
2
|
Chen W, Cui L, Li C, Su Y, Tang Y, Xu W. A novel aptamer biosensor using ZnO-3DNGH for sensitive and selective detection of Listeria monocytogenes. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
3
|
Brown K, Dennany L. Electrochemiluminescence sensors and forensic investigations: a viable technique for drug detection? PURE APPL CHEM 2022. [DOI: 10.1515/pac-2021-1204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Novel psychoactive substances (NPS) are today considered one of the major ticking public health time bombs in regard to drug abuse. The inability to identify these substances with current screening methods, sees their distribution remain uninterrupted and contributes to the high death rates amongst users. To tackle this problem, it is vital that new robust screening methods are developed, addressing the limitation of those currently in place, namely colour subjectivity and lack of compatibility with the complex matrices these substances may be found within. To this avail, electrochemical methods have been assessed. These low cost and extremely portable sensors have been successfully applied for the direct detection of a broad range of compounds of interest in a range of matrices including, herbal material, commercial drinks and biological fluids (serum, saliva, sweat and urine). With their high versatility, gifted through a significant degree of flexibility in regard to electrode material a range of sensors have to date been reported. In this review the various electrochemical sensors developed to date for NPS detection will be compared and contrasted, with a special focus upon those utilising electrochemiluminescence (ECL) technology.
Collapse
Affiliation(s)
- Kelly Brown
- Pure and Applied Chemistry , University of Strathclyde , Technology & Innovation Centre, 99 George Street , G1 1RD Glasgow , UK
| | | |
Collapse
|
4
|
Moradi R, Khalili NP, Septiani NLW, Liu CH, Doustkhah E, Yamauchi Y, Rotkin SV. Nanoarchitectonics for Abused-Drug Biosensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104847. [PMID: 34882957 DOI: 10.1002/smll.202104847] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Rapid, accessible, and highly accurate biosensors for the detection of addictive and abused drugs are needed to reduce the adverse personal and societal impacts of addiction. Modern sensors that utilize next-generation technologies, e.g., nanobiotechnology and nanoarchitectonics, have triggered revolutionary progress in the field as they allow accurate detection and tracking of trace levels of major classes of drugs. This paper reviews advances in the field of biosensors for the detection of commonly abused drugs, both prescribed such as codeine and morphine, and illegal narcotics like cocaine.
Collapse
Affiliation(s)
- Rasoul Moradi
- Nanotechnology Laboratory, School of Engineering and Applied Science, Khazar University, Baku, Az1096, Azerbaijan
- Department of Chemical Engineering, School of Engineering and Applied Science, Khazar University, Baku, Az1096, Azerbaijan
| | - Nazila Pour Khalili
- Nanotechnology Laboratory, School of Engineering and Applied Science, Khazar University, Baku, Az1096, Azerbaijan
- Center for Cell Pathology Research, Department of Biological Science, Khazar University, Baku, Az1096, Azerbaijan
| | - Ni Luh Wulan Septiani
- Advanced Functional Materials Research Group, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, and TMU Research Center of Urology and Kidney, Taipei Medical University, No. 250, Wu-Hsing Street, Taipei, 110, Taiwan
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, No. 291, Zhongzheng Road, Zhonghe District, New Taipei City, 23561, Taiwan
| | - Esmail Doustkhah
- International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Slava V Rotkin
- Department of Engineering Science and Mechanics, Materials Research Institute, The Pennsylvania State University, Millennium Science Complex, University Park, PA, 16802, USA
| |
Collapse
|
5
|
Paul M, Tannenberg R, Tscheuschner G, Ponader M, Weller MG. Cocaine Detection by a Laser-Induced Immunofluorometric Biosensor. BIOSENSORS-BASEL 2021; 11:bios11090313. [PMID: 34562903 PMCID: PMC8466613 DOI: 10.3390/bios11090313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 12/27/2022]
Abstract
The trafficking of illegal drugs by criminal networks at borders, harbors, or airports is an increasing issue for public health as these routes ensure the main supply of illegal drugs. The prevention of drug smuggling, including the installation of scanners and other analytical devices to detect small traces of drugs within a reasonable time frame, remains a challenge. The presented immunosensor is based on a monolithic affinity column with a large excess of immobilized hapten, which traps fluorescently labeled antibodies as long as the analyte cocaine is absent. In the presence of the drug, some binding sites of the antibody will be blocked, which leads to an immediate breakthrough of the labeled protein, detectable by highly sensitive laser-induced fluorescence with the help of a Peltier-cooled complementary metal-oxide-semiconductor (CMOS) camera. Liquid handling is performed with high-precision syringe pumps and microfluidic chip-based mixing devices and flow cells. The biosensor achieved limits of detection of 7 ppt (23 pM) of cocaine with a response time of 90 s and a total assay time below 3 min. With surface wipe sampling, the biosensor was able to detect 300 pg of cocaine. This immunosensor belongs to the most sensitive and fastest detectors for cocaine and offers near-continuous analyte measurement.
Collapse
|
6
|
|
7
|
Hu L, Yin H, Dong Y, Liu J, Chu X. An electrogenerated chemiluminescence aptasensor for lysozyme based on the interaction between Ru(bpy) 3 2+ and cucurbit[8]uril. LUMINESCENCE 2020; 36:418-424. [PMID: 33037741 DOI: 10.1002/bio.3958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022]
Abstract
Strong anodic Ru(bpy)3 2+ electrogenerated chemiluminescence (ECL) was obtained at a cucurbil[8]uril (CB[8]) modified electrode in neutral conditions without the need of an additional coreactant. An ECL aptasensor was fabricated based on the strong ECL emission as well as the host-guest interaction between DNA and CB[8]. Firstly, amino group-terminated complementary DNA (DNA-NH2 ) was firmly immobilized on CB[8]/glass carbon electrode, which could further increase ECL intensity. Then, a ferrocene group-terminated lysozyme aptamer (Fc-DNA) was hybridized with complementary DNA. The inhibiting effect of ferrocene on Ru(bpy)3 2+ ECL resulted in the apparent decrease in ECL signal. When the modified electrode was incubated in lysozyme, specific binding between lysozyme and its aptamer could release the ferrocene group from the electrode surface, and the ECL emission was recovered. As a result, an 'on-off-on' mode ECL aptasensor for lysozyme was fabricated. In the range 0.14-140 pg ml-1 , the increased ECL intensities exhibited excellent linearity with the logarithm of lysozyme concentrations, and the detection limit was calculated as 0.093 pg ml-1 (3σ). The proposed ECL aptasensor exhibited satisfactory analytical performance, revealing the potential application of CB[n]s in an ECL sensing field.
Collapse
Affiliation(s)
- LiQiao Hu
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization, Institute of Material Science and Engineering, Anhui University of Technology, Maanshan, China
| | - Hao Yin
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization, Institute of Material Science and Engineering, Anhui University of Technology, Maanshan, China
| | - YongPing Dong
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization, Institute of Material Science and Engineering, Anhui University of Technology, Maanshan, China
| | - JingXin Liu
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization, Institute of Material Science and Engineering, Anhui University of Technology, Maanshan, China
| | - XiangFeng Chu
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization, Institute of Material Science and Engineering, Anhui University of Technology, Maanshan, China
| |
Collapse
|
8
|
Wu Z, Zhou H, Han Q, Lin X, Han D, Li X. A cost-effective fluorescence biosensor for cocaine based on a "mix-and-detect" strategy. Analyst 2020; 145:4664-4670. [PMID: 32458835 DOI: 10.1039/d0an00675k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The efficient detection of illicit drugs such as cocaine continues to be important for the fight against drug trafficking. Herein, we report a one-step method for rapid and specific cocaine detection. The method is based on our finding that small-molecule Thioflavin T (ThT) can act as a fluorescence indicator, which can be bonded with the anti-cocaine aptamer (MNS-4.1) to generate an enhanced fluorescence signal. More interestingly, upon cocaine binding, the intercalated ThT can be replaced, causing a drastic fluorescence reduction. We further optimized the sequence of MNS-4.1 and a new anti-cocaine aptamer (coc.ap2-GC) was obtained. This aptamer showed a higher affinity to both ligands, which increased the ThT binding fluorescence intensity and showed the highest quenching efficiency. Based on the fluorescence change induced by competitive binding, cocaine detection could be accomplished by a "mix-and-detect" strategy within seconds. Such a label-free method exhibits high sensitivity to cocaine with a low detection limit of 250 nM. Moreover, the practical sample analysis (2.5% human urine and saliva) also exhibits good precision and high sensitivity.
Collapse
Affiliation(s)
- Zhifang Wu
- College of Pharmacy, Guangdong Medical University, Dongguan 523000, P. R. China.
| | | | | | | | | | | |
Collapse
|
9
|
Gao L, Wang H, Deng Z, Xiang W, Shi H, Xie B, Shi H. Highly sensitive detection for cocaine using an aptamer–cocaine–aptamer method. NEW J CHEM 2020. [DOI: 10.1039/c9nj05147c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, a thiol-modified aptamer was immobilized on a gold nanoparticle-modified molybdenum disulfide composite material (MoS2@AuNPs), which could remove the interference of physical adsorption and reduce false positive signals.
Collapse
Affiliation(s)
- Li Gao
- Institute of Life Sciences
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Huixing Wang
- Institute of Life Sciences
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Zebin Deng
- Institute of Life Sciences
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Wenwen Xiang
- Institute of Life Sciences
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Haifeng Shi
- Institute of Life Sciences
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Bing Xie
- Department of Obstetrics and Gynecology
- the Fourth People's Hospital of Zhenjiang
- Zhenjiang
- P. R. China
| | - Haixia Shi
- P. E. Department of Jiangsu University
- Zhenjiang 212013
- P. R. China
| |
Collapse
|
10
|
Brown K, McMenemy M, Palmer M, Baker MJ, Robinson DW, Allan P, Dennany L. Utilization of an Electrochemiluminescence Sensor for Atropine Determination in Complex Matrices. Anal Chem 2019; 91:12369-12376. [DOI: 10.1021/acs.analchem.9b02905] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kelly Brown
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Centre 99 George Street, Glasgow, G1 1RD, United Kingdom
| | - Moira McMenemy
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Centre 99 George Street, Glasgow, G1 1RD, United Kingdom
| | - Matthew Palmer
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Centre 99 George Street, Glasgow, G1 1RD, United Kingdom
| | - Matthew J. Baker
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Centre 99 George Street, Glasgow, G1 1RD, United Kingdom
| | - David W. Robinson
- School of Forensic and Applied Sciences, University of Central Lancashire, Lancashire, PR1 2XT, United Kingdom
| | - Pamela Allan
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Centre 99 George Street, Glasgow, G1 1RD, United Kingdom
| | - Lynn Dennany
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Centre 99 George Street, Glasgow, G1 1RD, United Kingdom
| |
Collapse
|
11
|
Zhang Y, Zhang R, Yang X, Qi H, Zhang C. Recent advances in electrogenerated chemiluminescence biosensing methods for pharmaceuticals. J Pharm Anal 2018; 9:9-19. [PMID: 30740252 PMCID: PMC6355466 DOI: 10.1016/j.jpha.2018.11.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 12/20/2022] Open
Abstract
Electrogenerated chemiluminescence (electrochemiluminescence, ECL) generates species at electrode surfaces, which undergoes electron-transfer reactions and forms excited states to emit light. It has become a very powerful analytical technique and has been widely used in such as clinical testing, biowarfare agent detection, and pharmaceutical analysis. This review focuses on the current trends of molecular recognition-based biosensing methods for pharmaceutical analysis since 2010. It introduces a background of ECL and presents the recent ECL developments in ECL immunoassay (ECLIA), immunosensors, enzyme-based biosensors, aptamer-based biosensors, and molecularly imprinted polymers (MIP)-based sensors. At last, the future perspective for these analytical methods is briefly discussed.
Collapse
Affiliation(s)
- Yu Zhang
- Medpace Bioanalytical Laboratories, 5365 Medpace Way, Cincinnati, OH 45227, USA
| | - Rui Zhang
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN 47405, USA
| | - Xiaolin Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
12
|
Qiu Y, Tang Y, Li B, He M. Rapid detection of cocaine using aptamer-based biosensor on an evanescent wave fibre platform. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180821. [PMID: 30473831 PMCID: PMC6227954 DOI: 10.1098/rsos.180821] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/13/2018] [Indexed: 05/11/2023]
Abstract
The rapid detection of cocaine has received considerable attention because of the instantaneous and adverse effects of cocaine overdose on human health. Aptamer-based biosensors for cocaine detection have been well established for research and application. However, reducing the analytic duration without deteriorating the sensitivity still remains as a challenge. Here, we proposed an aptamer-based evanescent wave fibre (EWF) biosensor to rapidly detect cocaine in a wide working range. At first, the aptamers were conjugated to complementary DNA with fluorescence tag and such conjugants were then immobilized on magnetic beads. After cocaine was introduced to compete against the aptamer-DNA conjugants, the released DNA in supernatant was detected on the EWF platform. The dynamic curves of EWF signals could be interpreted by the first-order kinetics and saturation model. The semi-log calibration curve covered a working range of 10-5000 µM of cocaine, and the limit of detection was approximately 10.5 µM. The duration of the full procedure was 990 s (16.5 min), and the detection interval was 390 s (6.5 min). The specified detection of cocaine was confirmed from four typical pharmaceutic agents. The analysis was repeated for 50 cycles without significant loss of sensitivity. Therefore, the aptamer-based EWF biosensor is a feasible solution to rapidly detect cocaine.
Collapse
Affiliation(s)
- Yong Qiu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yunfei Tang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
- Ecological Environmental Protection Investments Company, China Communications Construction Corporation, Beijing 100013, People's Republic of China
| | - Bing Li
- School of Energy and Environmental Engineering, University of Beijing Science and Technology, Beijing 100083, People's Republic of China
| | - Miao He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
13
|
Fabrication of a novel aptasensor based on three-dimensional reduced graphene oxide/polyaniline/gold nanoparticle composite as a novel platform for high sensitive and specific cocaine detection. Anal Chim Acta 2017; 996:10-19. [DOI: 10.1016/j.aca.2017.10.035] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 10/26/2017] [Indexed: 12/11/2022]
|
14
|
Abdelshafi NA, Panne U, Schneider RJ. Screening for cocaine on Euro banknotes by a highly sensitive enzyme immunoassay. Talanta 2017; 165:619-624. [DOI: 10.1016/j.talanta.2017.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/30/2016] [Accepted: 01/03/2017] [Indexed: 10/20/2022]
|
15
|
Muzyka K, Saqib M, Liu Z, Zhang W, Xu G. Progress and challenges in electrochemiluminescent aptasensors. Biosens Bioelectron 2017; 92:241-258. [PMID: 28231552 DOI: 10.1016/j.bios.2017.01.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 12/16/2016] [Accepted: 01/06/2017] [Indexed: 12/13/2022]
Abstract
The importance of developing new diagnostic and detection technologies for the growing number of sensing challenges is rising each year. Here, we present a comprehensive and concise review on electrochemiluminescent (ECL) aptasensors by putting special emphasis on its characteristic features, advances, challenges, and applications of ECL based aptasensors. ECL is an ideal tool for constructing such sensors because of its inherent characteristics and can be easily integrated into aptamer based sensing platforms. This review summarizes the "synergistic benefits" of ECL aptamer-based sensors; classifications of ECL aptamer-based assay designs, and signal amplification strategies. This critical review highlights the effects of integration of nanomaterials, immobilization techniques, and amplification/detection strategies on the analytical performance of ECL based aptasensors. Moreover, several proof-of-concepts with appropriate figures and explanations have been shown to provide a general guide for the design of ECL aptasensors, and to stimulate further application of these ECL aptasensors. Finally, we conclude with the remaining challenges and opportunities to inspire further developments in ECL aptasensors.
Collapse
Affiliation(s)
- Kateryna Muzyka
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China; Laboratory of Analytical Optochemotronics, Department of Biomedical Engineering, Kharkiv National University of Radio Electronics, Kharkiv 61166, Ukraine
| | - Muhammad Saqib
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China; University of Chinese Academy of Sciences, No. 19A Yuquanlu, Beijing 100049, China
| | - Zhongyuan Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
| | - Wei Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China.
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China.
| |
Collapse
|
16
|
Ribes À, Xifré -Pérez E, Aznar E, Sancenón F, Pardo T, Marsal LF, Martínez-Máñez R. Molecular gated nanoporous anodic alumina for the detection of cocaine. Sci Rep 2016; 6:38649. [PMID: 27924950 PMCID: PMC5141502 DOI: 10.1038/srep38649] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/10/2016] [Indexed: 12/26/2022] Open
Abstract
We present herein the use of nanoporous anodic alumina (NAA) as a suitable support to implement "molecular gates" for sensing applications. In our design, a NAA support is loaded with a fluorescent reporter (rhodamine B) and functionalized with a short single-stranded DNA. Then pores are blocked by the subsequent hybridisation of a specific cocaine aptamer. The response of the gated material was studied in aqueous solution. In a typical experiment, the support was immersed in hybridisation buffer solution in the absence or presence of cocaine. At certain times, the release of rhodamine B from pore voids was measured by fluorescence spectroscopy. The capped NAA support showed poor cargo delivery, but presence of cocaine in the solution selectively induced rhodamine B release. By this simple procedure a limit of detection as low as 5 × 10-7 M was calculated for cocaine. The gated NAA was successfully applied to detect cocaine in saliva samples and the possible re-use of the nanostructures was assessed. Based on these results, we believe that NAA could be a suitable support to prepare optical gated probes with a synergic combination of the favourable features of selected gated sensing systems and NAA.
Collapse
Affiliation(s)
- Àngela Ribes
- Instituto Interuniversitario de Investigaciόn de Reconocimiento Molecular y Desarrollo Tecnolόgico (IDM). Universitat Politècnica de València, Universitat de València, Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicína (CIBER-BBN)
| | - Elisabet Xifré -Pérez
- Departamento de Ingeniería Electrónica, Eléctrica y Automática, Universidad Rovira i Virgili, Avda. Països Catalans 26, 43007, Tarragona, Spain
| | - Elena Aznar
- Instituto Interuniversitario de Investigaciόn de Reconocimiento Molecular y Desarrollo Tecnolόgico (IDM). Universitat Politècnica de València, Universitat de València, Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicína (CIBER-BBN)
| | - Félix Sancenón
- Instituto Interuniversitario de Investigaciόn de Reconocimiento Molecular y Desarrollo Tecnolόgico (IDM). Universitat Politècnica de València, Universitat de València, Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicína (CIBER-BBN)
| | - Teresa Pardo
- Instituto Interuniversitario de Investigaciόn de Reconocimiento Molecular y Desarrollo Tecnolόgico (IDM). Universitat Politècnica de València, Universitat de València, Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicína (CIBER-BBN)
| | - Lluís F. Marsal
- Departamento de Ingeniería Electrónica, Eléctrica y Automática, Universidad Rovira i Virgili, Avda. Països Catalans 26, 43007, Tarragona, Spain
| | - Ramόn Martínez-Máñez
- Instituto Interuniversitario de Investigaciόn de Reconocimiento Molecular y Desarrollo Tecnolόgico (IDM). Universitat Politècnica de València, Universitat de València, Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicína (CIBER-BBN)
| |
Collapse
|
17
|
Haddache F, Le Goff A, Spinelli N, Gairola P, Gorgy K, Gondran C, Defrancq E, Cosnier S. A label-free photoelectrochemical cocaine aptasensor based on an electropolymerized ruthenium-intercalator complex. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.09.127] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Guler E, Bozokalfa G, Demir B, Gumus ZP, Guler B, Aldemir E, Timur S, Coskunol H. An aptamer folding-based sensory platform decorated with nanoparticles for simple cocaine testing. Drug Test Anal 2016; 9:578-587. [PMID: 27336666 DOI: 10.1002/dta.1992] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/11/2016] [Accepted: 04/11/2016] [Indexed: 01/08/2023]
Abstract
The consumption of illicit drugs such as cannabis, cocaine, and amphetamines is still a major health and social problem, creating an abuse in adults especially. Novel techniques which estimate the drug of abuse are needed for the detection of newly revealed psychoactive drugs. Herein, we have constructed a combinatorial platform by using quantum dots (QDs) and gold nanoparticles (AuNPs) as well as a functional aptamer which selectively recognizes cocaine and its metabolite benzoylecgonine (BE). We have called it an aptamer folding-based sensory device (AFSD). For the fabrication of AFSD, QDs were initially immobilized onto the poly-L-lysine coated μ-well surfaces. Then, the AuNP-aptamer conjugates were bound to the QDs. The addition of cocaine or BE caused a change in the aptamer structure which induced the close interaction of AuNPs with the QDs. Hence, quenching of the fluorescence of QDs was observed depending on the analyte amount. The linearity of cocaine and BE was 1.0-10 nM and 1.0-25 μM, respectively. Moreover, the limits of detection for cocaine and BE were calculated as 0.138 nM and 1.66 μM. The selectivity was tested by using different interfering substances (methamphetamine, bovine serum albumin, codeine, and 3-acetamidophenol). To investigate the use of AFSD in artificial urine matrix, cocaine/BE spiked samples were applied. Also, confirmatory analyses by using high performance liquid chromatography were performed. It is shown that AFSD has a good potential for testing the cocaine abuse and can be easily adapted for detection of various addictive drugs by changing the aptamer according to desired analytes. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Emine Guler
- Ege University Faculty of Science, Biochemistry Department, 35100, Bornova, Izmir, Turkey.,Ege University, Institute of Drug Abuse Toxicology & Pharmaceutical Sciences, 35100, Bornova, Izmir, Turkey
| | - Guliz Bozokalfa
- Ege University Faculty of Science, Biochemistry Department, 35100, Bornova, Izmir, Turkey
| | - Bilal Demir
- Ege University Faculty of Science, Biochemistry Department, 35100, Bornova, Izmir, Turkey
| | - Zinar Pinar Gumus
- Ege University, Institute of Drug Abuse Toxicology & Pharmaceutical Sciences, 35100, Bornova, Izmir, Turkey
| | - Bahar Guler
- Ege University Faculty of Science, Biochemistry Department, 35100, Bornova, Izmir, Turkey
| | - Ebru Aldemir
- Ege University, Institute of Drug Abuse Toxicology & Pharmaceutical Sciences, 35100, Bornova, Izmir, Turkey
| | - Suna Timur
- Ege University Faculty of Science, Biochemistry Department, 35100, Bornova, Izmir, Turkey.,Ege University, Institute of Drug Abuse Toxicology & Pharmaceutical Sciences, 35100, Bornova, Izmir, Turkey
| | - Hakan Coskunol
- Ege University, Institute of Drug Abuse Toxicology & Pharmaceutical Sciences, 35100, Bornova, Izmir, Turkey.,Ege LS, Cigli, 35620, Izmir, Turkey
| |
Collapse
|
19
|
Pfeiffer F, Mayer G. Selection and Biosensor Application of Aptamers for Small Molecules. Front Chem 2016; 4:25. [PMID: 27379229 PMCID: PMC4908669 DOI: 10.3389/fchem.2016.00025] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 05/30/2016] [Indexed: 12/12/2022] Open
Abstract
Small molecules play a major role in the human body and as drugs, toxins, and chemicals. Tools to detect and quantify them are therefore in high demand. This review will give an overview about aptamers interacting with small molecules and their selection. We discuss the current state of the field, including advantages as well as problems associated with their use and possible solutions to tackle these. We then discuss different kinds of small molecule aptamer-based sensors described in literature and their applications, ranging from detecting drinking water contaminations to RNA imaging.
Collapse
Affiliation(s)
- Franziska Pfeiffer
- Department of Chemical Biology, Life and Medical Sciences Institute, University of Bonn Bonn, Germany
| | - Günter Mayer
- Department of Chemical Biology, Life and Medical Sciences Institute, University of Bonn Bonn, Germany
| |
Collapse
|
20
|
|
21
|
Tang Y, Long F, Gu C, Wang C, Han S, He M. Reusable split-aptamer-based biosensor for rapid detection of cocaine in serum by using an all-fiber evanescent wave optical biosensing platform. Anal Chim Acta 2016; 933:182-8. [PMID: 27497011 DOI: 10.1016/j.aca.2016.05.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 01/28/2023]
Abstract
A rapid, facile, and sensitive assay of cocaine in biological fluids is important to prevent illegal abuse of drugs. A two-step structure-switching aptasensor has been developed for cocaine detection based on evanescent wave optical biosensing platform. In the proposed biosensing platform, two tailored aptamer probes were used to construct the molecular structure switching. In the existence of cocaine, two fragments of cocaine aptamer formed a three-way junction quickly, and the fluorophore group of one fragment was effectively quenched by the quencher group of the other one. The tail of the three-way junction hybridized with the cDNA sequences immobilized on the optical fiber biosensor. Fluorescence was excited by evanescent wave, and the fluorescence signal was proportional to cocaine concentration. Cocaine was detected in 450 s (300 s for incubation and 150 s for detection and regeneration) with a limit of detection (LOD) of 165.2 nM. The proposed aptasensor was evaluated in human serum samples, and it exhibited good recovery, precision, and accuracy without complicated sample pretreatments.
Collapse
Affiliation(s)
- Yunfei Tang
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Feng Long
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Chunmei Gu
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Cheng Wang
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shitong Han
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Miao He
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
22
|
Jie G, Jie G. Sensitive electrochemiluminescence detection of cancer cells based on a CdSe/ZnS quantum dot nanocluster by multibranched hybridization chain reaction on gold nanoparticles. RSC Adv 2016. [DOI: 10.1039/c6ra00750c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We prepared a novel amplified electrochemiluminescence signal probe based on CdSe/ZnS quantum dots by multibranched DNA hybridization chain reaction on gold nanoparticles, and developed a sensitive ECL biosensor for detection of cancer cells.
Collapse
Affiliation(s)
- Guitao Jie
- Haemal Internal Medicine
- Yishui Central Hospital in Linyi City
- Linyi
- P. R. China
| | - Guifen Jie
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| |
Collapse
|
23
|
Emrani AS, Danesh NM, Ramezani M, Taghdisi SM, Abnous K. A novel fluorescent aptasensor based on hairpin structure of complementary strand of aptamer and nanoparticles as a signal amplification approach for ultrasensitive detection of cocaine. Biosens Bioelectron 2015; 79:288-93. [PMID: 26716422 DOI: 10.1016/j.bios.2015.12.025] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/10/2015] [Accepted: 12/12/2015] [Indexed: 01/07/2023]
Abstract
Cocaine is one of the most commonly misused stimulant which could influence the central nervous system. In this study, a fluorescent aptamer-based sensor (aptasensor) was designed for sensitive and selective detection of cocaine, based on hairpin structure of complementary strand of aptamer (CS), target-induced release of aptamer (Apt) from CS and two kinds of nanoparticles, including silica nanoparticles (SNPs) coated with streptavidin and gold nanoparticles (AuNPs). The designed aptasensor acquires characteristics of AuNPs such as unique optical properties and large surface area, SNPs as amplifiers of fluorescence intensity, higher affinity of Apt toward its target relative to its CS, and finally the hairpin structure of CS that brings the fluorophore (FAM) to close proximity to the surface of SNPs. In the absence of cocaine, FAM is in close proximity to the surface of AuNPs, resulting in a weak fluorescence emission. In the presence of target, FAM comes to close proximity to the surface of SNPs because of the formation of hairpin structure of CS, leading to a very strong fluorescence emission. The fabricated fluorescent aptasensor exhibited a good selectivity toward cocaine with a limit of detection (LOD) as low as 209 pM. Moreover, the designed aptasensor was successfully utilized to detect cocaine in serum with a LOD as low as 293 pM.
Collapse
Affiliation(s)
| | - Noor Mohammad Danesh
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Research Institute of Sciences and New Technology, Mashhad, Iran
| | - Mohammad Ramezani
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Khalil Abnous
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
24
|
Cruickshank L, Officer S, Pollard P, Prabhu R, Stutter M, Fernandez C. Rare Elements Electrochemistry: The Development of a Novel Electrochemical Sensor for the Rapid Detection of Europium in Environmental Samples Using Gold Electrode Modified with 2-pyridinol-1-oxide. ANAL SCI 2015; 31:623-7. [PMID: 26165284 DOI: 10.2116/analsci.31.623] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This work presents for the first time the electrochemical determination of europium using cyclic voltammetry at gold electrodes modified with 2-pyridinol-1-oxide. A well-defined oxidation peak was observed in cyclic voltammetry as a result of the oxidation of the europium at ∼1100 mV in phosphate buffer at pH 7.0. The peak current increased linearly with the increase of concentration of the europium over the range from 1 to 80 μM and detection limit (based on 3-sigma) and quantification were found to be 0.3 and 0.549 μM, respectively. The analytical utility of the developed protocol was evaluated by performing the detection of the europium in river water. Europium is also linear over the concentration range 10 to 150 μM. (I(p)/μA = 0.7239x + 108.19, R(2) = 0.9981 and n = 9) with a detection limit of 6.5 μM (based on 3-sigma). This simple and effective protocol exhibited good sensitivity, precision and reliability towards the detected analyte.
Collapse
Affiliation(s)
- Laura Cruickshank
- Centre for Research in Energy and the Environment, Robert Gordon University
| | | | | | | | | | | |
Collapse
|
25
|
An improved design of the kissing complex-based aptasensor for the detection of adenosine. Anal Bioanal Chem 2015; 407:6515-24. [DOI: 10.1007/s00216-015-8818-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/16/2015] [Accepted: 06/01/2015] [Indexed: 01/01/2023]
|
26
|
Taghdisi SM, Danesh NM, Emrani AS, Ramezani M, Abnous K. A novel electrochemical aptasensor based on single-walled carbon nanotubes, gold electrode and complimentary strand of aptamer for ultrasensitive detection of cocaine. Biosens Bioelectron 2015; 73:245-250. [PMID: 26086444 DOI: 10.1016/j.bios.2015.05.065] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/24/2015] [Accepted: 05/29/2015] [Indexed: 01/21/2023]
Abstract
Cocaine is a strong central nervous system stimulant and one of the most commonly abused drugs. In this study, an electrochemical aptasensor was designed for sensitive and selective detection of cocaine, based on single-walled carbon nanotubes (SWNTs), gold electrode and complimentary strand of aptamer (CS). This electrochemical aptasensor inherits properties of SWNTs and gold such as large surface area and high electrochemical conductivity, as well as high affinity and selectivity of aptamer toward its target and the stronger interaction of SWNTs with single-stranded DNA (ssDNA) than double-stranded DNA (dsDNA). In the absence of cocaine, a little amount of SWNTs bind to Aptamer-CS-modified electrode, so that the electrochemical signal is weak. In the presence of cocaine, aptamer binds to cocaine, leaves the surface of electrode. So that, a large amount of SWNTs bind to CS-modified electrode, generating to a strong electrochemical signal. The designed electrochemical aptasensor showed good selectivity toward cocaine with a limit of detection (LOD) as low as 105 pM. Moreover, the fabricated electrochemical aptasensor was successfully applied to detect cocaine in serum with a LOD as low as 136 pM.
Collapse
Affiliation(s)
- Seyed Mohammad Taghdisi
- Targeted drug delivery Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Noor Mohammad Danesh
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Research Institute of Sciences and New Technology, Mashhad, Iran
| | | | - Mohammad Ramezani
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Khalil Abnous
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
27
|
van der Heide S, Garcia Calavia P, Hardwick S, Hudson S, Wolff K, Russell DA. A competitive enzyme immunoassay for the quantitative detection of cocaine from banknotes and latent fingermarks. Forensic Sci Int 2015; 250:1-7. [DOI: 10.1016/j.forsciint.2015.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 02/02/2015] [Accepted: 02/06/2015] [Indexed: 10/24/2022]
|
28
|
Li J, Li X, Zhang Y, Li R, Wu D, Du B, Zhang Y, Ma H, Wei Q. Electrochemiluminescence sensor based on cationic polythiophene derivative and NH2–graphene for dopamine detection. RSC Adv 2015. [DOI: 10.1039/c4ra14595j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, a novel electrochemiluminescence sensor was fabricated based on cationic polythiophene derivative poly[3-(1,1′-dimethyl-4-piperidinemethylene)thiophene-2,5-diyl chloride] and NH2–graphene for detection of dopamine.
Collapse
Affiliation(s)
- Jianxiu Li
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Xiaojian Li
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Yunhui Zhang
- School of Resources and Environment
- University of Jinan
- Jinan 250022
- P. R. China
| | - Rongxia Li
- School of Resources and Environment
- University of Jinan
- Jinan 250022
- P. R. China
| | - Dan Wu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Bin Du
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Yong Zhang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Hongmin Ma
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Qin Wei
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| |
Collapse
|
29
|
Mokhtarzadeh A, Ezzati Nazhad Dolatabadi J, Abnous K, de la Guardia M, Ramezani M. Nanomaterial-based cocaine aptasensors. Biosens Bioelectron 2014; 68:95-106. [PMID: 25562736 DOI: 10.1016/j.bios.2014.12.052] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/04/2014] [Accepted: 12/22/2014] [Indexed: 12/17/2022]
Abstract
Up to now, many different methods have been developed for detection of cocaine, but most of these methods are usually time-consuming, tedious and require special or expensive equipment. Therefore, the development of simple, sensitive and rapid detection methods is necessary. In the last decade, aptamers have been used as a new biosensor platform for detection of cocaine in different samples. Aptamers are artificial single-stranded DNA or RNA oligonucleotides capable of binding to specific molecular targets with high affinity and if integrated to nanomaterials, it may lead in precise methods for cocaine detection in the common laboratories. In this review, recent advances and applications of aptamer-based biosensors and nanobiosensors, have been updated, paying attention to the use of fluorescence, colorimetric and electrochemical techniques for the detection and quantitative determination of cocaine.
Collapse
Affiliation(s)
- Ahad Mokhtarzadeh
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box 91775-1365, Mashhad, Iran
| | | | - Khalil Abnous
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box 91775-1365, Mashhad, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Mohammad Ramezani
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box 91775-1365, Mashhad, Iran.
| |
Collapse
|
30
|
Montesano C, Sergi M, Perez G, Curini R, Compagnone D, Mascini M. Bio-inspired solid phase extraction sorbent material for cocaine: A cross reactivity study. Talanta 2014; 130:382-7. [DOI: 10.1016/j.talanta.2014.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 07/06/2014] [Accepted: 07/07/2014] [Indexed: 01/08/2023]
|
31
|
Roushani M, Shahdost-Fard F. A highly selective and sensitive cocaine aptasensor based on covalent attachment of the aptamer-functionalized AuNPs onto nanocomposite as the support platform. Anal Chim Acta 2014; 853:214-221. [PMID: 25467461 DOI: 10.1016/j.aca.2014.09.031] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 09/11/2014] [Accepted: 09/19/2014] [Indexed: 12/12/2022]
Abstract
Based on the conformational changes of the aptamer-functionalized gold nanoparticles (AuNPs) onto MWCNTs/IL/Chit nanocomposite as the support platform, we have developed a sensitive and selective electrochemical aptasensor for the detection of cocaine. The 5'-amine-3'-AuNP terminated aptamer is covalently attached to a MWCNTs/IL/Chit nanocomposite. The interaction of cocaine with the aptamer functionalized AuNP caused the aptamer to be folded and the AuNPs with negative charge at the end of the aptamer came to the near of electrode surface therefore, the electron transfer between ferricyanide (K3Fe(CN)6) as redox probe and electrode surface was inhibited. A decreased current of (K3Fe(CN)6) was monitored by differential pulse voltammetry technique. In an optimized condition the calibration curve for cocaine concentration was linear up to 11 μM with detection limit (signal-to-noise ratio of 3) of 100 pM. To test the selectivity of the prepared aptasensor sensing platform applicability, some analgesic drugs as the interferes were examined. The potential of the aptasensor was successfully applied for measuring cocaine concentration in human blood serum. Based on our experiments it can be said that the present method is absolutely beneficial in developing other electrochemical aptasensor.
Collapse
|
32
|
Jin G, Wang C, Yang L, Li X, Guo L, Qiu B, Lin Z, Chen G. Hyperbranched rolling circle amplification based electrochemiluminescence aptasensor for ultrasensitive detection of thrombin. Biosens Bioelectron 2014; 63:166-171. [PMID: 25086328 DOI: 10.1016/j.bios.2014.07.033] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/09/2014] [Accepted: 07/17/2014] [Indexed: 11/30/2022]
Abstract
An ultrasensitive electrochemiluminescence (ECL) aptamer sensor for protein (thrombin as an example) detection based on hyperbranched rolling circle amplification (HRCA) had been developed. A complementary single-strand DNA (CDNA) of the thrombin aptamer had been modified on the gold electrode firstly, and then hybridized with thrombin aptamer to make the aptamer immobilized on the electrode surface, in the presence of thrombin, aptamer-thrombin bioaffinity complexes formed and made thrombin aptamer leave the electrode surface. Thus, the linear padlock probe hybridized with the free CDNA on the electrode surface and circularized by Escherichia coli DNA ligase. Subsequently, the linear padlock probe was served as a template for the initiation of HRCA reaction, and a lot of dsDNA modified on the electrode surface. Then Ru(phen)₃²⁺ (acted as the ECL indicator) intercalates specifically into double-stranded DNA (dsDNA) grooves to generate ECL signal. The ECL intensity of the system has a linear relationship with thrombin concentration in the range of 3.0-300 aM with a detection limit of 1.2 aM (S/N=3). The proposed method combines the high sensitivity of ECL, exponential amplification of HRCA for signal enhancement and high selectivity of aptamer.
Collapse
Affiliation(s)
- Guixiao Jin
- MOE Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Institute of Nanomedicine and Nanobiosensing, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Chunmei Wang
- MOE Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Institute of Nanomedicine and Nanobiosensing, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Linlin Yang
- MOE Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Institute of Nanomedicine and Nanobiosensing, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Xiaojuan Li
- College of Environment and Resources, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Longhua Guo
- MOE Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Institute of Nanomedicine and Nanobiosensing, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Bin Qiu
- MOE Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Institute of Nanomedicine and Nanobiosensing, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Zhenyu Lin
- MOE Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Institute of Nanomedicine and Nanobiosensing, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Guonan Chen
- MOE Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Institute of Nanomedicine and Nanobiosensing, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
33
|
Yáñez-Sedeño P, Agüí L, Villalonga R, Pingarrón JM. Biosensors in forensic analysis. A review. Anal Chim Acta 2014; 823:1-19. [PMID: 24746348 DOI: 10.1016/j.aca.2014.03.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 03/09/2014] [Accepted: 03/11/2014] [Indexed: 02/04/2023]
Abstract
Forensic analysis is an important branch of modern Analytical Chemistry with many legal and socially relevant implications. Biosensors can play an important role as efficient tools in this field considering their well known advantages of sensitivity, selectivity, easy functioning, affordability and capability of miniaturization and automation. This article reviews the latest advances in the use of biosensors for forensic analysis. The different methodologies for the transduction of the produced biological events are considered and the applications to forensic toxicological analysis, classified by the nature of the target analytes, as well as those related with chemical and biological weapons critically commented. The article provides several Tables where the more relevant analytical characteristics of the selected reported methods are gathered.
Collapse
Affiliation(s)
- P Yáñez-Sedeño
- University Complutense, Department of Analytical Chemistry, Faculty of Chemistry, Ciudad Universitaria, Madrid 28040, Spain.
| | - L Agüí
- University Complutense, Department of Analytical Chemistry, Faculty of Chemistry, Ciudad Universitaria, Madrid 28040, Spain
| | - R Villalonga
- University Complutense, Department of Analytical Chemistry, Faculty of Chemistry, Ciudad Universitaria, Madrid 28040, Spain
| | - J M Pingarrón
- University Complutense, Department of Analytical Chemistry, Faculty of Chemistry, Ciudad Universitaria, Madrid 28040, Spain
| |
Collapse
|
34
|
Mascini M, Montesano C, Sergi M, Perez G, De Cicco M, Curini R, Compagnone D. Peptides trapping cocaine: docking simulation and experimental screening by solid phase extraction followed by liquid chromatography mass spectrometry in plasma samples. Anal Chim Acta 2013; 772:40-6. [DOI: 10.1016/j.aca.2013.02.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/15/2013] [Accepted: 02/19/2013] [Indexed: 11/29/2022]
|
35
|
Li B, Ellington* AD. Electrochemical Techniques as Powerful Readout Methods for Aptamer-based Biosensors. DNA CONJUGATES AND SENSORS 2012. [DOI: 10.1039/9781849734936-00211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Aptamers are single-stranded nucleic acids that can be selected in vitro with special folding structures to bind to many different small-molecule, protein, and cellular targets. Over the past two decades, aptamers have become novel promising recognition elements for the fabrication of biosensors. These ‘aptasensors’ have several advantages over antibodies in that they are relatively easy to synthesise or modify in vitro, and can be appended with linkers and reporters for adaptation to various sensing strategies. In this chapter, we introduce the various electrochemical techniques that can be used as powerful readout methods for aptasensors, providing a brief introduction to aptamers and related electrochemical techniques, and then a detailed description of various branches within the field, including labelled strategies, unlabelled strategies, and enzyme-amplified strategies. For each type of approach, several basic and improved design principles will be addressed. It is hoped that, through this discussion, readers will get a sense of how several variables (aptamers, targets and redox reporters) are successfully combined with electrochemical techniques in order to produce a series of sensing platforms with high selectivity and sensitivity.
Collapse
Affiliation(s)
- Bingling Li
- Institute for Cellular and Molecular Biology Center for Systems and Synthetic Biology, Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712 USA
| | - Andrew D. Ellington*
- Institute for Cellular and Molecular Biology Center for Systems and Synthetic Biology, Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712 USA
| |
Collapse
|
36
|
Liu Y, Matharu Z, Howland MC, Revzin A, Simonian AL. Affinity and enzyme-based biosensors: recent advances and emerging applications in cell analysis and point-of-care testing. Anal Bioanal Chem 2012; 404:1181-96. [PMID: 22722742 DOI: 10.1007/s00216-012-6149-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/17/2012] [Accepted: 05/24/2012] [Indexed: 01/09/2023]
Abstract
The applications of biosensors range from environmental testing and biowarfare agent detection to clinical testing and cell analysis. In recent years, biosensors have become increasingly prevalent in clinical testing and point-of-care testing. This is driven in part by the desire to decrease the cost of health care, to shift some of the analytical tests from centralized facilities to "frontline" physicians and nurses, and to obtain more precise information more quickly about the health status of a patient. This article gives an overview of recent advances in the field of biosensors, focusing on biosensors based on enzymes, aptamers, antibodies, and phages. In addition, this article attempts to describe efforts to apply these biosensors to clinical testing and cell analysis.
Collapse
Affiliation(s)
- Ying Liu
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
37
|
Wang RE, Zhang Y, Cai J, Cai W, Gao T. Aptamer-based fluorescent biosensors. Curr Med Chem 2012; 18:4175-84. [PMID: 21838688 DOI: 10.2174/092986711797189637] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Revised: 07/18/2011] [Accepted: 07/19/2011] [Indexed: 01/24/2023]
Abstract
Selected from random pools of DNA or RNA molecules through systematic evolution of ligands by exponential enrichment (SELEX), aptamers can bind to target molecules with high affinity and specificity, which makes them ideal recognition elements in the development of biosensors. To date, aptamer-based biosensors have used a wide variety of detection techniques, which are briefly summarized in this article. The focus of this review is on the development of aptamer-based fluorescent biosensors, with emphasis on their design as well as properties such as sensitivity and specificity. These biosensors can be broadly divided into two categories: those using fluorescently-labeled aptamers and others that employ label-free aptamers. Within each category, they can be further divided into "signal-on" and "signal-off" sensors. A number of these aptamer-based fluorescent biosensors have shown promising results in biological samples such as urine and serum, suggesting their potential applications in biomedical research and disease diagnostics.
Collapse
Affiliation(s)
- R E Wang
- Department of Chemistry, Washington University in St. Louis, MO, USA
| | | | | | | | | |
Collapse
|
38
|
Aptamer sensor for cocaine using minor groove binder based energy transfer. Anal Chim Acta 2012; 719:76-81. [PMID: 22340534 DOI: 10.1016/j.aca.2012.01.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 12/30/2011] [Accepted: 01/03/2012] [Indexed: 11/22/2022]
Abstract
We report on an optical aptamer sensor for cocaine detection. The cocaine sensitive fluorescein isothiocyanate (FITC)-labeled aptamer underwent a conformational change from a partial single-stranded DNA with a short hairpin to a double-stranded T-junction in the presence of the target. The DNA minor groove binder Hoechst 33342 selectively bound to the double-stranded T-junction, bringing the dye within the Förster radius of FITC, and therefore initiating minor groove binder based energy transfer (MBET), and reporting on the presence of cocaine. The sensor showed a detection limit of 0.2 μM. The sensor was also implemented on a carboxy-functionalized polydimethylsiloxane (PDMS) surface by covalently immobilizing DNA aptamers. The ability of surface-bound cocaine detection is crucial for the development of microfluidic sensors.
Collapse
|