Chen SY, Juang YM, Chien MW, Li KI, Yu CS, Lai CC. Magnetic iron oxide nanoparticle enrichment of phosphopeptides on a radiate microstructure MALDI chip.
Analyst 2011;
136:4454-9. [PMID:
21897971 DOI:
10.1039/c1an15334j]
[Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Several methods can be used to improve the enrichment of phosphorylated proteins. In this paper, phosphopeptides were enriched using magnetic iron(II,III) oxide (magnetite, Fe(3)O(4)) nanoparticles (NPs) on a radiate microstructure silicon chip and then analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) without further purification processes. We have developed a radiate microstructure chip on which samples can be concentrated for analysis by MALDI-TOFMS. The phosphoprotein digests and magnetic iron oxide NPs aqueous solution were deposited onto the central zone of the radiate microstructure silicon chip and enabled the on-chip enrichment of phosphopeptides. Microscopic analysis confirmed that the applied samples were confined to the central zone. Sample spots focused on the chip were much smaller than those on an unmodified plate with the same total volume. Different additives were used and optimized processes were performed to minimize non-phosphopeptides interference. These data collectively demonstrate that our on-chip phosphopeptide enrichment protocol is a rapid and easy-to-use method for phosphoproteome analysis.
Collapse