1
|
Notarstefano V, Santoni C, Montanari E, Paolo Busardò F, Montana A, Orilisi G, Mariani P, Giorgini E. A new approach to assess post-mortem interval: A machine learning-assisted label-free ATR-FTIR analysis of human vitreous humor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125326. [PMID: 39536668 DOI: 10.1016/j.saa.2024.125326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/13/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
A crucial issue in forensics is determining the post-mortem interval (PMI), the time between death and the finding of a body. Despite various methods already employed for its estimation, only approximate values are currently achievable. Vitreous humor (VH) is an avascular tissue between the lens and the retina, mainly composed by a collagen fibers network, hyaluronic acid, and hyalocytes. Recently, it has received interest in forensic medicine, being easy to collect and susceptible to low microbiological contamination and putrefaction. Based on this evidence and thanks to the ability of Attenuated Total Reflectance - Fourier Transform InfraRed (ATR-FTIR) spectroscopy to perform fast analyses on a minimal sample amount, in this study, a new analytical approach to reliably estimate PMI is proposed combining ATR-FTIR analysis of VH human samples with multivariate statistical procedures, such as Principal Component Analysis (PCA) and Partial Least Squares-Discriminant Analysis (PLS-DA), for discriminant classification. Regression procedures, including Partial Least Squares Regression (PLSR), were performed: extremely positive results were obtained, and the most discriminant spectral features were highlighted (peaks at 1665, 1630, 1585, 1400, 1220, 1200, 1120, 854, 835, and 740 cm-1) and associated to PMI classes (average accuracy over 80 %). Specific and reliable markers able to correlate the macromolecular composition of VH with the PMI were identified, revealing a post-mortem protein degradation and amino acids deamination (decrease of proteins and increase of free amino acids and NH3), an increase of lactate, which diffuses from the retina to the VH, and changes in the hyaluronic acid component.
Collapse
Affiliation(s)
- Valentina Notarstefano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Chiara Santoni
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Eva Montanari
- Azienda Ospedaliero-Universitaria delle Marche, Via Conca 71, 60121 Ancona, Italy.
| | - Francesco Paolo Busardò
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Via Conca 71, 60121 Ancona, Italy
| | - Angelo Montana
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Via Conca 71, 60121 Ancona, Italy
| | - Giulia Orilisi
- Department of Odontostomatologic and Specialized Clinical Sciences, Polytechnic University of Marche, Via Conca 71, 60121 Ancona, Italy
| | - Paolo Mariani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Elisabetta Giorgini
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
2
|
Rugiel MM, Setkowicz ZK, Drozdz AK, Janeczko KJ, Kutorasińska J, Chwiej JG. The Use of Fourier Transform Infrared Microspectroscopy for the Determination of Biochemical Anomalies of the Hippocampal Formation Characteristic for the Kindling Model of Seizures. ACS Chem Neurosci 2021; 12:4564-4579. [PMID: 34817152 PMCID: PMC8678993 DOI: 10.1021/acschemneuro.1c00642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
![]()
The animal models
of seizures and/or epilepsy are widely used to
identify the pathomechanisms of the disease as well as to look for
and test the new antiseizure therapies. The understanding of the mechanisms
of action of new drugs and evaluation of their safety in animals require
previous knowledge concerning the biomolecular anomalies characteristic
for the particular model. Among different models of seizures, one
of the most widely used is the kindling model that was also applied
in our study. To examine the influence of multiple transauricular
electroshocks on the biochemical composition of rat hippocampal formation,
Fourier transform infrared (FT-IR) microspectrosopy was utilized.
The chemical mapping of the main absorption bands and their ratios
allowed us to detect significant anomalies in both the distribution
and structure of main biomolecules for electrically stimulated rats.
They included an increased relative content of proteins with β-sheet
conformation (an increased ratio of the absorbance at the wavenumbers
of 1635 and 1658 cm–1), a decreased level of cholesterol
and/or its esters and compounds containing phosphate groups (a diminished
intensity of the massif of 1360–1480 cm–1 and the band at 1240 cm–1), as well as increased
accumulation of carbohydrates and the compounds containing carbonyl
groups (increased intensity of the bands at 1080 and 1740 cm–1, respectively). The observed biomolecular abnormalities seem to
be the consequence of lipid peroxidation promoted by reactive oxygen
species as well as the mobilization of glucose that resulted from
the increased demand to energy during postelectroshock seizures.
Collapse
Affiliation(s)
- Marzena M. Rugiel
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, A. Mickiewicza 30, Krakow 30-059, Poland
| | - Zuzanna K. Setkowicz
- Institute of Zoology and Biomedical Research, Jagiellonian University, Golebia 24, Krakow 31-007, Poland
| | - Agnieszka K. Drozdz
- Maria Curie-Sklodowska University, Institute of Biological Sciences, Akademicka 19, Lublin 20-033, Poland
| | - Krzysztof J. Janeczko
- Institute of Zoology and Biomedical Research, Jagiellonian University, Golebia 24, Krakow 31-007, Poland
| | - Justyna Kutorasińska
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, A. Mickiewicza 30, Krakow 30-059, Poland
| | - Joanna G. Chwiej
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, A. Mickiewicza 30, Krakow 30-059, Poland
| |
Collapse
|
3
|
Ahmed GAR, El Hotaby W, Abbas L, Sherif HHA, Kamel G, Khalil SKH. Synchrotron Fourier transform infrared microspectroscopy (sFTIRM) analysis of Al-induced Alzheimer's disease in rat brain cortical tissue. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 239:118421. [PMID: 32473558 DOI: 10.1016/j.saa.2020.118421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/05/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
Aluminium (Al) is reported to promote beta amyloid (Aβ) aggregation, free radical production and disturb acetylcholine metabolism leading to cognitive dysfunction that are strongly associated with Alzheimer's disease (AD). Here we utilized synchrotron Fourier transform infrared microspectroscopy (sFTIRM) to analyse the fine structure of proteins and lipids in the rat cortical brain tissues in response to AlCl3 toxicity and Lepidium sativum (LS) treatment after 42 and 65 days. For statistical analysis, we used principal component analysis (PCA). Our results showed profusion of gauche rotomers form in membrane lipid acyl chains that increases the membrane fluidity and disorder only in AD group indicated by the detected sνCH2 band shift to higher frequency. All half bands width (HBW) values of the decomposed amide I band showed marked decrease in AD group compared to the other tested groups, together with an increase in the amounts of β-sheets (1641 cm-1) protein and random coil structure (1654 cm-1). These were indicated by a drastic increase in the percentage areas ratios of (1638 cm-1/1654 cm-1) and (1641 cm-1/1654 cm-1) that may be attributed to a stronger the hydrogen bonds that stabilize the protein conformational structure and/or the increase of the β-strand length due to misfolded Aβ formation in response to Al toxicity through transit phase/phases dominated by random coil structure. In curative group, LS treatment reversed these changes and restored the protein and lipid integrities. To conclude, sFTIRM is a powerful tool that shed light on the biomolecular structure of AD-like cortical brain tissue and considered the therapeutic potential of LS as a promising natural AD treatment.
Collapse
Affiliation(s)
- Gehan A-R Ahmed
- Spectroscopy Dept., Physics Division, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.) Dokki, P.O. Box 12622, Giza, Egypt.
| | - W El Hotaby
- Spectroscopy Dept., Physics Division, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.) Dokki, P.O. Box 12622, Giza, Egypt
| | - Lamyaa Abbas
- Spectroscopy Dept., Physics Division, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.) Dokki, P.O. Box 12622, Giza, Egypt
| | - Hadeer H A Sherif
- Spectroscopy Dept., Physics Division, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.) Dokki, P.O. Box 12622, Giza, Egypt
| | - Gihan Kamel
- SESAME (Synchroton Light for Experimental Science and Applications in the Middle East), Jordan; Department of Physics, Faculty of Science, Helwan University, Cairo, Egypt
| | - Safaa K H Khalil
- Spectroscopy Dept., Physics Division, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.) Dokki, P.O. Box 12622, Giza, Egypt
| |
Collapse
|
4
|
Gholinejad M, Rasouli Z, Najera C, Sansano JM. Palladium Nanoparticles on a Creatine-Modified Bentonite Support: An Efficient and Sustainable Catalyst for Nitroarene Reduction. Chempluschem 2020; 84:1122-1129. [PMID: 31943954 DOI: 10.1002/cplu.201900377] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/27/2019] [Indexed: 11/06/2022]
Abstract
Creatine as the nitrogen-rich, green and cheap compound is used for modification of natural bentonite and the resulting material is employed for the stabilization of Palladium nanoparticles having an average diameter of 3 nm. This new material bento-crt@Pd is characterized using different techniques such as X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), solid state UV-vis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and energy-dispersive X-ray spectroscopy (EDX). This green catalyst promotes efficient reduction of aromatic nitro compounds in aqueous media. By using this catalyst nitroarenes having electron donating as well as electron withdrawing groups were reduced efficiently to their corresponding amines at room temperature. The catalyst can be recycled seven times and the reused catalyst was characterized by TEM and XPS.
Collapse
Affiliation(s)
- Mohammad Gholinejad
- Department of Chemistry, Institute for Advanced, Studies in Basic Sciences (IASBS, P. O. Box 45195-1159, Gavazang, Zanjan, 45137-66731, Iran.,Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Zahra Rasouli
- Department of Chemistry, Institute for Advanced, Studies in Basic Sciences (IASBS, P. O. Box 45195-1159, Gavazang, Zanjan, 45137-66731, Iran
| | - Carmen Najera
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, 03080-Alicante, Spain
| | - José M Sansano
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, 03080-Alicante, Spain
| |
Collapse
|
5
|
Starch functionalized creatine for stabilization of gold nanoparticles: Efficient heterogeneous catalyst for the reduction of nitroarenes. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.118965] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
Chwiej JG, Ciesielka SW, Skoczen AK, Janeczko KJ, Sandt C, Planeta KL, Setkowicz ZK. Biochemical Changes Indicate Developmental Stage in the Hippocampal Formation. ACS Chem Neurosci 2019; 10:628-635. [PMID: 30375847 DOI: 10.1021/acschemneuro.8b00471] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The literature showing how age of humans or animals influences the IR absorption spectra recorded in different brain regions is very poor. A very limited number of studies used FTIR microspectroscopy for analysis of the aging process, however there is lack of data concerning the biomolecular changes occurring in the course of postnatal development of the central nervous system. Therefore, in this paper the topographic and semiquantitative biochemical changes occurring within the rat hippocampus during postnatal development were examined. To achieve the goal of the study, three groups of normal male rats differing in age were investigated. These were 6, 30, and 60 day old animals, and the chosen ages correspond to the neonatal period, childhood, and early adulthood in humans, respectively. Already, preliminary topographic analysis identified a number of significant changes in the accumulation of biomolecules within the hippocampal formation occurring during brain development. Such observation was confirmed by further semiquantitative analysis of intensities of selected absorption bands or ratios of their intensities. The detailed examinations were done for four hippocampal cellular layers (multiform, molecular, pyramidal, and granular layers), and the results showed that the accumulation of most biomolecules, including both saturated and unsaturated lipids as well as compounds containing phosphate and carbonyl groups, was significantly higher in adulthood comparing to the neonatal period. What is more, the increases in their levels were observed mostly between 6th and 30th days of animals' life. The unsaturation level of lipids did not change during postnatal development, although the differences in unsaturated and saturated lipids contents were noticed between examined animal groups. Significant differences in relative secondary structure of proteins were found between young adult rats and animals in neonatal period for which the relative level of proteins with β-type secondary structure was the highest.
Collapse
Affiliation(s)
- Joanna G. Chwiej
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow 30-059, Poland
| | - Stanislaw W. Ciesielka
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow 30-059, Poland
| | - Agnieszka K. Skoczen
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow 30-059, Poland
| | - Krzysztof J. Janeczko
- Jagiellonian University, Institute of Zoology and Biomedical Research, Krakow 30-387, Poland
| | | | - Karolina L. Planeta
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow 30-059, Poland
| | - Zuzanna K. Setkowicz
- Jagiellonian University, Institute of Zoology and Biomedical Research, Krakow 30-387, Poland
| |
Collapse
|
7
|
Lee DH, Lee DW, Kwon JI, Woo CW, Kim ST, Lee JS, Choi CG, Kim KW, Kim JK, Woo DC. In Vivo Mapping and Quantification of Creatine Using Chemical Exchange Saturation Transfer Imaging in Rat Models of Epileptic Seizure. Mol Imaging Biol 2018; 21:232-239. [DOI: 10.1007/s11307-018-1243-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Skoczen A, Setkowicz Z, Janeczko K, Sandt C, Borondics F, Chwiej J. The influence of high fat diets with different ketogenic ratios on the hippocampal accumulation of creatine - FTIR microspectroscopy study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 184:13-22. [PMID: 28477512 DOI: 10.1016/j.saa.2017.04.085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/12/2017] [Accepted: 04/30/2017] [Indexed: 06/07/2023]
Abstract
The main purpose of this study was the determination and comparison of anomalies in creatine (Cr) accumulation occurring within CA3 and DG areas of hippocampal formation as a result of two high-fat, carbohydrate-restricted ketogenic diets (KD) with different ketogenic ratio (KR). To reach this goal, Fourier transformed infrared microspectroscopy with synchrotron radiation source (SRFTIR microspectroscopy) was applied for chemical mapping of creatine absorption bands, occurring around 1304, 1398 and 2800 cm-1. The samples were taken from three groups of experimental animals: control group (N) fed with standard laboratory diet, KD1 and KD2 groups fed with high-fat diets with KR 5:1 and 9:1 respectively. Additionally, the possible influence on the phosphocreatine (PhCr, the high energetic form of creatine) content was evaluated by comparative analysis of chemical maps obtained for creatine and for compounds containing phosphate groups which manifest in the spectra at the wavenumbers of around 1240 and 1080 cm-1. Our results showed that KD2 strongly modifies the frequency of Cr inclusions in both analyzed hippocampal areas. Statistical analysis, performed with Mann-Whitney U test revealed increased accumulation of Cr within CA3 and DG areas of KD2 fed rats compared to both normal rats and KD1 experimental group. Moreover, KD2 diet may modify the frequency of PhCr deposits as well as the PhCr to Cr ratio.
Collapse
Affiliation(s)
- A Skoczen
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland.
| | - Z Setkowicz
- Jagiellonian University, Institute of Zoology, Krakow, Poland
| | - K Janeczko
- Jagiellonian University, Institute of Zoology, Krakow, Poland
| | | | | | - J Chwiej
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
| |
Collapse
|
9
|
Sandt C, Nadaradjane C, Richards R, Dumas P, Sée V. Use of infrared microspectroscopy to elucidate a specific chemical signature associated with hypoxia levels found in glioblastoma. Analyst 2016; 141:870-83. [DOI: 10.1039/c5an02112j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Detection of the chemical signature associated with hypoxia in single glioblastoma cells by synchrotron infrared microspectroscopy.
Collapse
Affiliation(s)
- Christophe Sandt
- Synchrotron SOLEIL
- L'Orme des Merisiers
- 91192 Gif sur Yvette
- France
| | - Céline Nadaradjane
- Synchrotron SOLEIL
- L'Orme des Merisiers
- 91192 Gif sur Yvette
- France
- Department of Biochemistry
| | - Rosalie Richards
- Department of Biochemistry
- Institute of Integrative Biology
- University of Liverpool
- Liverpool
- UK
| | - Paul Dumas
- Synchrotron SOLEIL
- L'Orme des Merisiers
- 91192 Gif sur Yvette
- France
| | - Violaine Sée
- Department of Biochemistry
- Institute of Integrative Biology
- University of Liverpool
- Liverpool
- UK
| |
Collapse
|
10
|
Chwiej J, Skoczen A, Matusiak K, Janeczko K, Patulska A, Sandt C, Simon R, Ciarach M, Setkowicz Z. The influence of the ketogenic diet on the elemental and biochemical compositions of the hippocampal formation. Epilepsy Behav 2015; 49:40-6. [PMID: 25986320 DOI: 10.1016/j.yebeh.2015.04.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 04/19/2015] [Indexed: 10/23/2022]
Abstract
A growing body of evidence demonstrates that dietary therapies, mainly the ketogenic diet, may be highly effective in the reduction of epileptic seizures. All of them share the common characteristic of restricting carbohydrate intake to shift the predominant caloric source of the diet to fat. Catabolism of fats results in the production of ketone bodies which become alternate energy substrates to glucose. Although many mechanisms by which ketone bodies yield its anticonvulsant effect are proposed, the relationships between the brain metabolism of the ketone bodies and their neuroprotective and antiepileptogenic action still remain to be discerned. In the study, X-ray fluorescence microscopy and FTIR microspectroscopy were used to follow ketogenic diet-induced changes in the elemental and biochemical compositions of rat hippocampal formation tissue. The use of synchrotron sources of X-rays and infrared allowed us to examine changes in the accumulation and distribution of selected elements (P, S, K, Ca, Fe, Cu, Zn, and Se) and biomolecules (proteins, lipids, ketone bodies, etc.) with the micrometer spatial resolution. The comparison of rats fed with the ketogenic diet and rats fed with the standard laboratory diet showed changes in the hippocampal accumulation of P, K, Ca, and Zn. The relations obtained for Ca (increased level in CA3, DG, and its internal area) and Zn (decreased areal density in CA3 and DG) were analogous to those that we previously observed for rats in the acute phase of pilocarpine-induced seizures. Biochemical analysis of tissues taken from ketogenic diet-fed rats demonstrated increased intensity of absorption band occurring at 1740 cm(-1), which was probably the result of elevated accumulation of ketone bodies. Moreover, higher absolute and relative (3012 cm(-1)/2924 cm(-1), 3012 cm(-1)/lipid massif, and 3012 cm(-1)/amide I) intensity of the 3012-cm(-1) band resulting from increased unsaturated fatty acids content was found after the treatment with the high-fat diet. This article is part of a Special Issue entitled "Status Epilepticus".
Collapse
Affiliation(s)
- Joanna Chwiej
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland.
| | - Agnieszka Skoczen
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
| | - Katarzyna Matusiak
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
| | - Krzysztof Janeczko
- Jagiellonian University, Institute of Zoology, Department of Neuroanatomy, Krakow, Poland
| | - Agnieszka Patulska
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
| | | | - Rolf Simon
- Institut fur Synchrotronstrahlung, Research Centre Karlsruhe, Karlsruhe, Germany
| | - Malgorzata Ciarach
- Jagiellonian University, Institute of Zoology, Department of Neuroanatomy, Krakow, Poland
| | - Zuzanna Setkowicz
- Jagiellonian University, Institute of Zoology, Department of Neuroanatomy, Krakow, Poland
| |
Collapse
|
11
|
Hackett MJ, Britz CJ, Paterson PG, Nichol H, Pickering IJ, George GN. In situ biospectroscopic investigation of rapid ischemic and postmortem induced biochemical alterations in the rat brain. ACS Chem Neurosci 2015; 6:226-38. [PMID: 25350866 PMCID: PMC4372066 DOI: 10.1021/cn500157j] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
![]()
Rapid advances in
imaging technologies have pushed novel spectroscopic
modalities such as Fourier transform infrared spectroscopy (FTIR)
and X-ray absorption spectroscopy (XAS) at the sulfur K-edge to the
forefront of direct in situ investigation of brain biochemistry. However,
few studies have examined the extent to which sample preparation artifacts
confound results. Previous investigations using traditional analyses,
such as tissue dissection, homogenization, and biochemical assay,
conducted extensive research to identify biochemical alterations that
occur ex vivo during sample preparation. In particular, altered metabolism
and oxidative stress may be caused by animal death. These processes
were a concern for studies using biochemical assays, and protocols
were developed to minimize their occurrence. In this investigation,
a similar approach was taken to identify the biochemical alterations
that are detectable by two in situ spectroscopic methods (FTIR, XAS)
that occur as a consequence of ischemic conditions created during
humane animal killing. FTIR and XAS are well suited to study markers
of altered metabolism such as lactate and creatine (FTIR) and markers
of oxidative stress such as aggregated proteins (FTIR) and altered
thiol redox (XAS). The results are in accordance with previous investigations
using biochemical assays and demonstrate that the time between animal
death and tissue dissection results in ischemic conditions that alter
brain metabolism and initiate oxidative stress. Therefore, future
in situ biospectroscopic investigations utilizing FTIR and XAS must
take into consideration that brain tissue dissected from a healthy
animal does not truly reflect the in vivo condition, but rather reflects
a state of mild ischemia. If studies require the levels of metabolites
(lactate, creatine) and markers of oxidative stress (thiol redox)
to be preserved as close as possible to the in vivo condition, then
rapid freezing of brain tissue via decapitation into liquid nitrogen,
followed by chiseling the brain out at dry ice temperatures is required.
Collapse
Affiliation(s)
- Mark J. Hackett
- Molecular
and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Carter J. Britz
- Department
of Anatomy and Cell Biology, University of Saskatchewan, 107
Wiggins Rd, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Phyllis G. Paterson
- College
of Pharmacy and Nutrition, University of Saskatchewan, D Wing Health Sciences, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Helen Nichol
- Department
of Anatomy and Cell Biology, University of Saskatchewan, 107
Wiggins Rd, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Ingrid J. Pickering
- Molecular
and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Graham N. George
- Molecular
and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
| |
Collapse
|
12
|
Chwiej J, Skoczen A, Janeczko K, Kutorasinska J, Matusiak K, Figiel H, Dumas P, Sandt C, Setkowicz Z. The biochemical changes in hippocampal formation occurring in normal and seizure experiencing rats as a result of a ketogenic diet. Analyst 2015; 140:2190-204. [DOI: 10.1039/c4an01857e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, ketogenic diet-induced biochemical changes occurring in normal and epileptic hippocampal formations were compared.
Collapse
Affiliation(s)
- Joanna Chwiej
- AGH-University of Science and Technology
- Faculty of Physics and Applied Computer Science
- Krakow
- Poland
| | - Agnieszka Skoczen
- AGH-University of Science and Technology
- Faculty of Physics and Applied Computer Science
- Krakow
- Poland
| | | | - Justyna Kutorasinska
- AGH-University of Science and Technology
- Faculty of Physics and Applied Computer Science
- Krakow
- Poland
| | - Katarzyna Matusiak
- AGH-University of Science and Technology
- Faculty of Physics and Applied Computer Science
- Krakow
- Poland
| | - Henryk Figiel
- AGH-University of Science and Technology
- Faculty of Physics and Applied Computer Science
- Krakow
- Poland
| | | | | | | |
Collapse
|
13
|
Chwiej J, Gabrys H, Janeczko K, Kutorasinska J, Gzielo-Jurek K, Matusiak K, Appel K, Setkowicz Z. Elemental anomalies in the hippocampal formation after repetitive electrical stimulation: an X-ray fluorescence microscopy study. J Biol Inorg Chem 2014; 19:1209-20. [PMID: 25027680 PMCID: PMC4175042 DOI: 10.1007/s00775-014-1177-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 06/30/2014] [Indexed: 11/28/2022]
Abstract
Our previous studies carried out on the pilocarpine model of seizures showed that highly resolved elemental analysis might be very helpful in the investigation of processes involved in the pathogenesis of epilepsy, such as excitotoxicity or mossy fiber sprouting. In this study, the changes in elemental composition that occurred in the hippocampal formation in the electrical kindling model of seizures were examined to determine the mechanisms responsible for the phenomenon of kindling and spontaneous seizure activity that may occur in this animal model. X-ray fluorescence microscopy was applied for topographic and quantitative analysis of selected elements in tissues taken from rats subjected to repetitive transauricular electroshocks (ES) and controls (N). The detailed comparisons were carried out for sectors 1 and 3 of the Ammon's horn (CA1 and CA3, respectively), the dentate gyrus (DG) and hilus of DG. The obtained results showed only one statistically significant difference between ES and N groups, namely a higher level of Fe was noticed in CA3 region in the kindled animals. However, further analysis of correlations between the elemental levels and quantitative parameters describing electroshock-induced tonic and clonic seizures showed that the areal densities of some elements (Ca, Cu, Zn) strongly depended on the progress of kindling process. The areal density of Cu in CA1 decreased with the cumulative (totaled over 21 stimulation days) intensity and duration of electroshock-induced tonic seizures while Zn level in the hilus of DG was positively correlated with the duration and intensity of both tonic and clonic seizures.
Collapse
Affiliation(s)
- J Chwiej
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow, Poland,
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Kutorasinska J, Setkowicz Z, Janeczko K, Sandt C, Dumas P, Chwiej J. Differences in the hippocampal frequency of creatine inclusions between the acute and latent phases of pilocarpine model defined using synchrotron radiation-based FTIR microspectroscopy. Anal Bioanal Chem 2013; 405:7337-45. [PMID: 23877175 PMCID: PMC3756859 DOI: 10.1007/s00216-013-7191-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 06/12/2013] [Accepted: 06/28/2013] [Indexed: 11/28/2022]
Abstract
Temporal lobe epilepsy (TLE) is the most common type of epilepsy in adults. Of the animal models developed to investigate the pathogenesis of TLE, the one with pilocarpine-induced seizures is most often used. After pilocarpine administration in animals, three distinct periods--acute, latent, and chronic--can be distinguished according to their behavior. The present paper is the continuation of our previous study which has shown an increased occurrence of creatine inclusions in rat hippocampal formations from the acute phase of pilocarpine-induced status epilepticus (SE) and positive correlation between their quantity and the total time of seizure activity within the observation period. In this paper, we tried to verify if anomalies in hippocampal creatine accumulation were the temporary or permanent effect of pilocarpine-evoked seizures. To realize this purpose, male Wistar rats in the latent phase (3 days after pilocarpine administration) were examined. The results obtained for the period when stabilization of animal behavior and EEG occurs were afterwards compared with ones obtained for the acute phase of pilocarpine-induced SE and for naive controls. To investigate the frequency of creatine inclusions within the hippocampal formation as well as in its selected areas (sectors 1-3 of Ammon's horn (CA1-CA3), dentate gyrus (DG), and hilus of DG) and cellular layers (pyramidal, molecular, multiform, and granular cell layers), synchrotron radiation-based Fourier-transform infrared microspectroscopy was used. The applied technique, being a combination of light microscopy and infrared spectroscopy, allowed us to localize microscopic details in the analyzed samples and provided information concerning their chemical composition. Moreover, the use of a synchrotron source of IR radiation allowed us to carry out the research at the diffraction-limited spatial resolution which, because of the typical size of creatine inclusions (from a few to dozens of micrometers), was necessary for our study. The comparison of epileptic animals in the latent phase with controls showed statistically significant increase in the number of creatine inclusions for most of the analyzed hippocampal regions, all examined cellular layers, as well as the whole hippocampal formation. Moreover, for the hilus of the DG and CA3 area, the number of creatine deposits was higher in the latent than in the acute phase after pilocarpine injection. In light of the obtained results, an anomaly in the hippocampal accumulation of creatine is the long-term effect of pilocarpine-evoked seizures, and the intensity of this phenomenon may increase with time passing from the primary injury.
Collapse
Affiliation(s)
- J Kutorasinska
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059, Krakow, Poland.
| | | | | | | | | | | |
Collapse
|
15
|
Hackett MJ, Borondics F, Brown D, Hirschmugl C, Smith SE, Paterson PG, Nichol H, Pickering IJ, George GN. Subcellular biochemical investigation of purkinje neurons using synchrotron radiation fourier transform infrared spectroscopic imaging with a focal plane array detector. ACS Chem Neurosci 2013; 4:1071-80. [PMID: 23638613 DOI: 10.1021/cn4000346] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Coupling Fourier transform infrared spectroscopy with focal plane array detectors at synchrotron radiation sources (SR-FTIR-FPA) has provided a rapid method to simultaneously image numerous biochemical markers in situ at diffraction limited resolution. Since cells and nuclei are well resolved at this spatial resolution, a direct comparison can be made between FTIR functional group images and the histology of the same section. To allow histological analysis of the same section analyzed with infrared imaging, unfixed air-dried tissue sections are typically fixed (after infrared spectroscopic analysis is completed) via immersion fixation. This post fixation process is essential to allow histological staining of the tissue section. Although immersion fixation is a common practice in this filed, the initial rehydration of the dehydrated unfixed tissue can result in distortion of subcellular morphology and confound correlation between infrared images and histology. In this study, vapor fixation, a common choice in other research fields where postfixation of unfixed tissue sections is required, was employed in place of immersion fixation post spectroscopic analysis. This method provided more accurate histology with reduced distortions as the dehydrated tissue section is fixed in vapor rather than during rehydration in an aqueous fixation medium. With this approach, accurate correlation between infrared images and histology of the same section revealed that Purkinje neurons in the cerebellum are rich in cytosolic proteins and not depleted as once thought. In addition, we provide the first direct evidence of intracellular lactate within Purkinje neurons. This highlights the significant potential for future applications of SR-FTIR-FPA imaging to investigate cellular lactate under conditions of altered metabolic demand such as increased brain activity and hypoxia or ischemia.
Collapse
Affiliation(s)
- Mark J. Hackett
- Molecular and Environmental Sciences Group, Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon,
Saskatchewan S7N5E2, Canada
| | | | - Devin Brown
- Department of Anatomy and Cell Biology, University of Saskatchewan, 107 Wiggins Rd, Saskatoon,
Saskatchewan S7N5E5, Canada
| | - Carol Hirschmugl
- Department of Physics, University of Wisconsin—Milwaukee, Milwaukee,
Wisconsin 53211, United States
| | - Shari E. Smith
- College of Pharmacy and Nutrition, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewn S7N5C9, Canada
| | - Phyllis G. Paterson
- College of Pharmacy and Nutrition, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewn S7N5C9, Canada
| | - Helen Nichol
- Department of Anatomy and Cell Biology, University of Saskatchewan, 107 Wiggins Rd, Saskatoon,
Saskatchewan S7N5E5, Canada
| | - Ingrid J. Pickering
- Molecular and Environmental Sciences Group, Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon,
Saskatchewan S7N5E2, Canada
| | - Graham N. George
- Molecular and Environmental Sciences Group, Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon,
Saskatchewan S7N5E2, Canada
| |
Collapse
|
16
|
Hackett MJ, Lee J, El-Assaad F, McQuillan JA, Carter EA, Grau GE, Hunt NH, Lay PA. FTIR imaging of brain tissue reveals crystalline creatine deposits are an ex vivo marker of localized ischemia during murine cerebral malaria: general implications for disease neurochemistry. ACS Chem Neurosci 2012; 3:1017-24. [PMID: 23259037 DOI: 10.1021/cn300093g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 09/11/2012] [Indexed: 12/13/2022] Open
Abstract
Phosphocreatine is a major cellular source of high energy phosphates, which is crucial to maintain cell viability under conditions of impaired metabolic states, such as decreased oxygen and energy availability (i.e., ischemia). Many methods exist for the bulk analysis of phosphocreatine and its dephosphorylated product creatine; however, no method exists to image the distribution of creatine or phosphocreatine at the cellular level. In this study, Fourier transform infrared (FTIR) spectroscopic imaging has revealed the ex vivo development of creatine microdeposits in situ in the brain region most affected by the disease, the cerebellum of cerebral malaria (CM) diseased mice; however, such deposits were also observed at significantly lower levels in the brains of control mice and mice with severe malaria. In addition, the number of deposits was observed to increase in a time-dependent manner during dehydration post tissue cutting. This challenges the hypotheses in recent reports of FTIR spectroscopic imaging where creatine microdeposits found in situ within thin sections from epileptic, Alzheimer's (AD), and amlyoid lateral sclerosis (ALS) diseased brains were proposed to be disease specific markers and/or postulated to contribute to the brain pathogenesis. As such, a detailed investigation was undertaken, which has established that the creatine microdeposits exist as the highly soluble HCl salt or zwitterion and are an ex-vivo tissue processing artifact and, hence, have no effect on disease pathogenesis. They occur as a result of creatine crystallization during dehydration (i.e., air-drying) of thin sections of brain tissue. As ischemia and decreased aerobic (oxidative metabolism) are common to many brain disorders, regions of elevated creatine-to-phosphocreatine ratio are likely to promote crystal formation during tissue dehydration (due to the lower water solubility of creatine relative to phosphocreatine). The results of this study have demonstrated that although the deposits do not occur in vivo, and do not directly play any role in disease pathogenesis, increased levels of creatine deposits within air-dried tissue sections serve as a highly valuable marker for the identification of tissue regions with an altered metabolic status. In this study, the location of crystalline creatine deposits were used to identify whether an altered metabolic state exists within the molecular and granular layers of the cerebellum during CM, which complements the recent discovery of decreased oxygen availability in the brain during this disease.
Collapse
Affiliation(s)
- Mark J. Hackett
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | - Joonsup Lee
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | | | | | | | | | | | - Peter A. Lay
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| |
Collapse
|