1
|
Octobre G, Delprat N, Doumèche B, Leca-Bouvier B. Herbicide detection: A review of enzyme- and cell-based biosensors. ENVIRONMENTAL RESEARCH 2024; 249:118330. [PMID: 38341074 DOI: 10.1016/j.envres.2024.118330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/18/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024]
Abstract
Herbicides are the most widely used class of pesticides in the world. Their intensive use raises the question of their harmfulness to the environment and human health. These pollutants need to be detected at low concentrations, especially in water samples. Commonly accepted analytical techniques (HPLC-MS, GC-MS, ELISA tests) are available, but these highly sensitive and time-consuming techniques suffer from high cost and from the need for bulky equipment, user training and sample pre-treatment. Biosensors can be used as complementary early-warning systems that are less sensitive and less selective. On the other hand, they are rapid, inexpensive, easy-to-handle and allow direct detection of the sample, on-site, without any further step other than dilution. This review focuses on enzyme- and cell- (or subcellular elements) based biosensors. Different enzymes (such as tyrosinase or peroxidase) whose activity is inhibited by herbicides are presented. Photosynthetic cells such as algae or cyanobacteria are also reported, as well as subcellular elements (thylakoids, chloroplasts). Atrazine, diuron, 2,4-D and glyphosate appear as the most frequently detected herbicides, using amperometry or optical transduction (mainly based on chlorophyll fluorescence). The recent new WSSA/HRAC classification of herbicides is also included in the review.
Collapse
Affiliation(s)
- Guillaume Octobre
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ICBMS, UMR5246, 69622 Villeurbanne, France.
| | - Nicolas Delprat
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ICBMS, UMR5246, 69622 Villeurbanne, France
| | - Bastien Doumèche
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ICBMS, UMR5246, 69622 Villeurbanne, France
| | - Béatrice Leca-Bouvier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ICBMS, UMR5246, 69622 Villeurbanne, France.
| |
Collapse
|
2
|
Lee CKW, Pan Y, Yang R, Kim M, Li MG. Laser-Induced Transfer of Functional Materials. Top Curr Chem (Cham) 2023; 381:18. [PMID: 37212928 DOI: 10.1007/s41061-023-00429-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/28/2023] [Indexed: 05/23/2023]
Abstract
Patterning is crucial for the large-scale application of functional materials. Laser-induced transfer is an emerging patterning method for additively depositing functional materials to the target acceptor. With the rapid development of laser technologies, this laser printing method emerges as a versatile method to deposit functional materials in either liquid or solid format. The emerging applications such as solar interfacial evaporation, solar cells, light-emitting diodes, sensors, high-output synthesis, and other fields are rising fields benefiting from laser-induced transfer. Following a brief introduction to the principles of laser-induced transfer, this review will comprehensively deliberate this novel additive manufacturing method, including preparing the donor layer and the applications, advantages, and limitations of this technique. Finally, perspectives for handling current and future functional materials using laser-induced transfer will also be discussed. Non-experts in laser technologies can also gain insights into this prevailing laser-induced transfer process, which may inspire their future research.
Collapse
Affiliation(s)
- Connie Kong Wai Lee
- Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Hong Kong SAR, Clear Water Bay, Kowloon, 999077, People's Republic of China
| | - Yexin Pan
- Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Hong Kong SAR, Clear Water Bay, Kowloon, 999077, People's Republic of China
| | - Rongliang Yang
- Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Hong Kong SAR, Clear Water Bay, Kowloon, 999077, People's Republic of China
| | - Minseong Kim
- Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Hong Kong SAR, Clear Water Bay, Kowloon, 999077, People's Republic of China
| | - Mitch Guijun Li
- Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Hong Kong SAR, Clear Water Bay, Kowloon, 999077, People's Republic of China.
| |
Collapse
|
3
|
Pesticide Detection in Vegetable Crops Using Enzyme Inhibition Methods: a Comprehensive Review. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02254-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
4
|
Abstract
Printing technology promises a viable solution for the low-cost, rapid, flexible, and mass fabrication of biosensors. Among the vast number of printing techniques, screen printing and inkjet printing have been widely adopted for the fabrication of biosensors. Screen printing provides ease of operation and rapid processing; however, it is bound by the effects of viscous inks, high material waste, and the requirement for masks, to name a few. Inkjet printing, on the other hand, is well suited for mass fabrication that takes advantage of computer-aided design software for pattern modifications. Furthermore, being drop-on-demand, it prevents precious material waste and offers high-resolution patterning. To exploit the features of inkjet printing technology, scientists have been keen to use it for the development of biosensors since 1988. A vast number of fully and partially inkjet-printed biosensors have been developed ever since. This study presents a short introduction on the printing technology used for biosensor fabrication in general, and a brief review of the recent reports related to virus, enzymatic, and non-enzymatic biosensor fabrication, via inkjet printing technology in particular.
Collapse
|
5
|
Mahmood MA, Popescu AC. 3D Printing at Micro-Level: Laser-Induced Forward Transfer and Two-Photon Polymerization. Polymers (Basel) 2021; 13:2034. [PMID: 34206309 PMCID: PMC8271989 DOI: 10.3390/polym13132034] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 01/17/2023] Open
Abstract
Laser-induced forward transfer (LIFT) and two-photon polymerization (TPP) have proven their abilities to produce 3D complex microstructures at an extraordinary level of sophistication. Indeed, LIFT and TPP have supported the vision of providing a whole functional laboratory at a scale that can fit in the palm of a hand. This is only possible due to the developments in manufacturing at micro- and nano-scales. In a short time, LIFT and TPP have gained popularity, from being a microfabrication innovation utilized by laser experts to become a valuable instrument in the hands of researchers and technologists performing in various research and development areas, such as electronics, medicine, and micro-fluidics. In comparison with conventional micro-manufacturing methods, LIFT and TPP can produce exceptional 3D components. To gain benefits from LIFT and TPP, in-detail comprehension of the process and the manufactured parts' mechanical-chemical characteristics is required. This review article discusses the 3D printing perspectives by LIFT and TPP. In the case of the LIFT technique, the principle, classification of derivative methods, the importance of flyer velocity and shock wave formation, printed materials, and their properties, as well as various applications, have been discussed. For TPP, involved mechanisms, the difference between TPP and single-photon polymerization, proximity effect, printing resolution, printed material properties, and different applications have been analyzed. Besides this, future research directions for the 3D printing community are reviewed and summarized.
Collapse
Affiliation(s)
- Muhammad Arif Mahmood
- Laser Department, National Institute for Laser, Plasma and Radiation Physics (INFLPR), 077125 Magurele, Ilfov, Romania;
- Faculty of Physics, University of Bucharest, 077125 Magurele, Ilfov, Romania
| | - Andrei C. Popescu
- Center for Advanced Laser Technologies (CETAL), National Institute for Laser, Plasma and Radiation Physics (INFLPR), 077125 Magurele, Ilfov, Romania
| |
Collapse
|
6
|
Wang P, Zhao F, Hartmann V, Nowaczyk MM, Ruff A, Schuhmann W, Conzuelo F. Reassessing the rationale behind herbicide biosensors: The case of a photosystem II/redox polymer-based bioelectrode. Bioelectrochemistry 2020; 136:107597. [PMID: 32674005 DOI: 10.1016/j.bioelechem.2020.107597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/04/2020] [Accepted: 07/04/2020] [Indexed: 01/12/2023]
Abstract
Interfacing photosynthetic protein complexes with electrodes is frequently used for the identification of electron transfer mechanisms and the fabrication of biosensors. Binding of herbicide compounds to the terminal plastoquinone QB at photosystem II (PSII) causes disruption of electron flow that is associated with a diminished performance of the associated biodevice. Thus, the principle of electron transport inhibition at PSII can be used for herbicide detection and has inspired the fabrication of several biosensors for this purpose. However, the biosensor performance may reveal a more complex behavior than generally expected. As we present here for a photobioelectrode constituted by PSII embedded in a redox polymer matrix, the effect caused by inhibitors does not only impact the electron transfer from PSII but also the properties of the polymer film used for immobilization and electrical wiring of the protein complexes. Incorporation of phenolic inhibitors into the polymer film surprisingly translates into enhanced photocurrents and, in particular cases, in a higher stability of the overall electrode architecture. The achieved results stress the importance to evaluate first the possible influence of analytes of interest on the biosensor architecture as a whole and provide important insights for consideration in future design of bioelectrochemical devices.
Collapse
Affiliation(s)
- Panpan Wang
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Fangyuan Zhao
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Volker Hartmann
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Marc M Nowaczyk
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Adrian Ruff
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany.
| | - Felipe Conzuelo
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany.
| |
Collapse
|
7
|
Pundir C, Malik A, Preety. Bio-sensing of organophosphorus pesticides: A review. Biosens Bioelectron 2019; 140:111348. [DOI: 10.1016/j.bios.2019.111348] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 05/22/2019] [Indexed: 01/09/2023]
|
8
|
Milano F, Giotta L, Chirizzi D, Papazoglou S, Kryou C, De Bartolomeo A, De Leo V, Guascito MR, Zergioti I. Phosphate Modified Screen Printed Electrodes by LIFT Treatment for Glucose Detection. BIOSENSORS-BASEL 2018; 8:bios8040091. [PMID: 30332738 PMCID: PMC6316885 DOI: 10.3390/bios8040091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/13/2018] [Accepted: 10/12/2018] [Indexed: 11/21/2022]
Abstract
The design of new materials as active layers is important for electrochemical sensor and biosensor development. Among the techniques for the modification and functionalization of electrodes, the laser induced forward transfer (LIFT) has emerged as a powerful physisorption method for the deposition of various materials (even labile materials like enzymes) that results in intimate and stable contact with target surface. In this work, Pt, Au, and glassy carbon screen printed electrodes (SPEs) treated by LIFT with phosphate buffer have been characterized by scanning electron microscopy and atomic force microscopy to reveal a flattening effect of all surfaces. The electrochemical characterization by cyclic voltammetry shows significant differences depending on the electrode material. The electroactivity of Au is reduced while that of glassy carbon and Pt is greatly enhanced. In particular, the electrochemical behavior of a phosphate LIFT treated Pt showed a marked enrichment of hydrogen adsorbed layer, suggesting an elevated electrocatalytic activity towards glucose oxidation. When Pt electrodes modified in this way were used as an effective glucose sensor, a 1–10 mM linear response and a 10 µM detection limit were obtained. A possible role of phosphate that was securely immobilized on a Pt surface, as evidenced by XPS analysis, enhancing the glucose electrooxidation is discussed.
Collapse
Affiliation(s)
- Francesco Milano
- Istituto per i Processi Chimico Fisici, UOS Bari, Via Orabona 4, 70126 Bari, Italy.
| | - Livia Giotta
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, S.P. Lecce-Monteroni, 73100 Lecce, Italy.
| | - Daniela Chirizzi
- IZS Puglia e Basilicata, U.O. Putignano. Via Chiancolla 1, C.da. S. Pietro Piturno, 70017 Putignano (BA), Italy.
| | - Simos Papazoglou
- Department of Physics, National Technical University of Athens, Iroon Polytehneiou 9, Zografou, 15780 Athens, Greece.
| | - Christina Kryou
- Department of Physics, National Technical University of Athens, Iroon Polytehneiou 9, Zografou, 15780 Athens, Greece.
| | - Annarita De Bartolomeo
- Dipartimento di Beni Culturali, Università del Salento, S.P. Lecce-Monteroni, 73100 Lecce, Italy.
| | - Vincenzo De Leo
- Istituto per i Processi Chimico Fisici, UOS Bari, Via Orabona 4, 70126 Bari, Italy.
- Dipartimento di Chimica, Università di Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy.
| | - Maria Rachele Guascito
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, S.P. Lecce-Monteroni, 73100 Lecce, Italy.
- IZS Puglia e Basilicata, U.O. Putignano. Via Chiancolla 1, C.da. S. Pietro Piturno, 70017 Putignano (BA), Italy.
| | - Ioanna Zergioti
- Department of Physics, National Technical University of Athens, Iroon Polytehneiou 9, Zografou, 15780 Athens, Greece.
| |
Collapse
|
9
|
Bucur B, Munteanu FD, Marty JL, Vasilescu A. Advances in Enzyme-Based Biosensors for Pesticide Detection. BIOSENSORS 2018; 8:E27. [PMID: 29565810 PMCID: PMC6022933 DOI: 10.3390/bios8020027] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/18/2018] [Accepted: 03/20/2018] [Indexed: 01/10/2023]
Abstract
The intensive use of toxic and remanent pesticides in agriculture has prompted research into novel performant, yet cost-effective and fast analytical tools to control the pesticide residue levels in the environment and food. In this context, biosensors based on enzyme inhibition have been proposed as adequate analytical devices with the added advantage of using the toxicity of pesticides for detection purposes, being more "biologically relevant" than standard chromatographic methods. This review proposes an overview of recent advances in the development of biosensors exploiting the inhibition of cholinesterases, photosynthetic system II, alkaline phosphatase, cytochrome P450A1, peroxidase, tyrosinase, laccase, urease, and aldehyde dehydrogenase. While various strategies have been employed to detect pesticides from different classes (organophosphates, carbamates, dithiocarbamates, triazines, phenylureas, diazines, or phenols), the number of practical applications and the variety of environmental and food samples tested remains limited. Recent advances focus on enhancing the sensitivity and selectivity by using nanomaterials in the sensor assembly and novel mutant enzymes in array-type sensor formats in combination with chemometric methods for data analysis. The progress in the development of solar cells enriched the possibilities for efficient wiring of photosynthetic enzymes on different surfaces, opening new avenues for development of biosensors for photosynthesis-inhibiting herbicides.
Collapse
Affiliation(s)
- Bogdan Bucur
- National Institute of Research and Development for Biological Sciences, Centre of Bioanalysis, 296 Splaiul Independentei, 060031 Bucharest, Romania.
| | - Florentina-Daniela Munteanu
- Faculty of Food Engineering, Tourism and Environmental Protection, "Aurel Vlaicu" University of Arad, Elena Dragoi, No. 2, 310330 Arad, Romania.
| | - Jean-Louis Marty
- BAE Laboratory, Université de Perpignan via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan, France.
| | - Alina Vasilescu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101 Bucharest, Romania.
| |
Collapse
|
10
|
Highly sensitive SnO2 sensor via reactive laser-induced transfer. Sci Rep 2016; 6:25144. [PMID: 27118531 PMCID: PMC4846859 DOI: 10.1038/srep25144] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/11/2016] [Indexed: 11/08/2022] Open
Abstract
Gas sensors based on tin oxide (SnO2) and palladium doped SnO2 (Pd:SnO2) active materials are fabricated by a laser printing method, i.e. reactive laser-induced forward transfer (rLIFT). Thin films from tin based metal-complex precursors are prepared by spin coating and then laser transferred with high resolution onto sensor structures. The devices fabricated by rLIFT exhibit low ppm sensitivity towards ethanol and methane as well as good stability with respect to air, moisture, and time. Promising results are obtained by applying rLIFT to transfer metal-complex precursors onto uncoated commercial gas sensors. We could show that rLIFT onto commercial sensors is possible if the sensor structures are reinforced prior to printing. The rLIFT fabricated sensors show up to 4 times higher sensitivities then the commercial sensors (with inkjet printed SnO2). In addition, the selectivity towards CH4 of the Pd:SnO2 sensors is significantly enhanced compared to the pure SnO2 sensors. Our results indicate that the reactive laser transfer technique applied here represents an important technical step for the realization of improved gas detection systems with wide-ranging applications in environmental and health monitoring control.
Collapse
|
11
|
Nguyen AK, Narayan RJ. Liquid-Phase Laser Induced Forward Transfer for Complex Organic Inks and Tissue Engineering. Ann Biomed Eng 2016; 45:84-99. [PMID: 27090894 DOI: 10.1007/s10439-016-1617-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/09/2016] [Indexed: 01/17/2023]
Abstract
Laser induced forward transfer (LIFT) acts as a novel alternative to incumbent plotting techniques such as inkjet printing due to its ability to precisely deposit and position picoliter-sized droplets while being gentle enough to preserve sensitive structures within the ink. Materials as simple as screen printing ink to complex eukaryotic cells have been printed with applications spanning from microelectronics to tissue engineering. Biotechnology can benefit from this technique due to the efficient use of low volumes of reagent and the compatibility with a wide range of rheological properties. In addition, LIFT can be performed in a simple lab environment, not requiring vacuum or other extreme conditions. Although the basic apparatus is simple, many strategies exist to optimize the performance considering the ink and the desired pattern. The basic mechanism is similar between studies so the large number of variants can be summarized into a couple of categories and reported on with respect to their specific applications. In particular, precise and gentle deposition of complex molecules and eukaryotic cells represent the unique abilities of this technology. LIFT has demonstrated not only marked improvements in the quality of sensors and related medical devices over those manufactured with incumbent technologies but also great applicability in tissue engineering due to the high viability of printed cells.
Collapse
Affiliation(s)
- Alexander K Nguyen
- Joint Department of Biomedical Engineering, University of North Carolina, Campus Box 7575, Chapel Hill, NC, 27599-7575, USA
| | - Roger J Narayan
- Joint Department of Biomedical Engineering, University of North Carolina, Campus Box 7575, Chapel Hill, NC, 27599-7575, USA.
| |
Collapse
|
12
|
Roach T, Krieger-Liszkay A. Regulation of photosynthetic electron transport and photoinhibition. Curr Protein Pept Sci 2014; 15:351-62. [PMID: 24678670 PMCID: PMC4030316 DOI: 10.2174/1389203715666140327105143] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 11/22/2013] [Accepted: 03/16/2014] [Indexed: 01/30/2023]
Abstract
Photosynthetic organisms and isolated photosystems are of interest for technical applications. In nature, photosynthetic electron transport has to work efficiently in contrasting environments such as shade and full sunlight at noon. Photosynthetic electron transport is regulated on many levels, starting with the energy transfer processes in antenna and ending with how reducing power is ultimately partitioned. This review starts by explaining how light energy can be dissipated or distributed by the various mechanisms of non-photochemical quenching, including thermal dissipation and state transitions, and how these processes influence photoinhibition of photosystem II (PSII). Furthermore, we will highlight the importance of the various alternative electron transport pathways, including the use of oxygen as the terminal electron acceptor and cyclic flow around photosystem I (PSI), the latter which seem particularly relevant to preventing photoinhibition of photosystem I. The control of excitation pressure in combination with the partitioning of reducing power influences the light-dependent formation of reactive oxygen species in PSII and in PSI, which may be a very important consideration to any artificial photosynthetic system or technical device using photosynthetic organisms.
Collapse
|