1
|
Onofrei D, Stengel D, Jia D, Johnson HR, Trescott S, Soni A, Addison B, Muthukumar M, Holland GP. Investigating the Atomic and Mesoscale Interactions that Facilitate Spider Silk Protein Pre-Assembly. Biomacromolecules 2021; 22:3377-3385. [PMID: 34251190 DOI: 10.1021/acs.biomac.1c00473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Black widow spider dragline silk is one of nature's high-performance biological polymers, exceeding the strength and toughness of most man-made materials including high tensile steel and Kevlar. Major ampullate (Ma), or dragline silk, is primarily comprised of two spidroin proteins (Sp) stored within the Ma gland. In the native gland environment, the MaSp1 and MaSp2 proteins self-associate to form hierarchical 200-300 nm superstructures despite being intrinsically disordered proteins (IDPs). Here, dynamic light scattering (DLS), three-dimensional (3D) triple resonance solution NMR, and diffusion NMR is utilized to probe the MaSp size, molecular structure, and dynamics of these protein pre-assemblies diluted in 4 M urea and identify specific regions of the proteins important for silk protein pre-assembly. 3D NMR indicates that the Gly-Ala-Ala and Ala-Ala-Gly motifs flanking the poly(Ala) runs, which comprise the β-sheet forming domains in fibers, are perturbed by urea, suggesting that these regions may be important for silk protein pre-assembly stabilization.
Collapse
Affiliation(s)
- David Onofrei
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, California 92182-1030, United States
| | - Dillan Stengel
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, California 92182-1030, United States
| | - Di Jia
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States.,Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Hannah R Johnson
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, California 92182-1030, United States
| | - Samantha Trescott
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, California 92182-1030, United States
| | - Ashana Soni
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, California 92182-1030, United States
| | - Bennett Addison
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, California 92182-1030, United States
| | - Murugappan Muthukumar
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Gregory P Holland
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, California 92182-1030, United States
| |
Collapse
|
2
|
Addison B, Stengel D, Bharadwaj VS, Happs RM, Doeppke C, Wang T, Bomble YJ, Holland GP, Harman-Ware AE. Selective One-Dimensional 13C- 13C Spin-Diffusion Solid-State Nuclear Magnetic Resonance Methods to Probe Spatial Arrangements in Biopolymers Including Plant Cell Walls, Peptides, and Spider Silk. J Phys Chem B 2020; 124:9870-9883. [PMID: 33091304 DOI: 10.1021/acs.jpcb.0c07759] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Two-dimensional (2D) and 3D through-space 13C-13C homonuclear spin-diffusion techniques are powerful solid-state nuclear magnetic resonance (NMR) tools for extracting structural information from 13C-enriched biomolecules, but necessarily long acquisition times restrict their applications. In this work, we explore the broad utility and underutilized power of a chemical shift-selective one-dimensional (1D) version of a 2D 13C-13C spin-diffusion solid-state NMR technique. The method, which is called 1D dipolar-assisted rotational resonance (DARR) difference, is applied to a variety of biomaterials including lignocellulosic plant cell walls, microcrystalline peptide fMLF, and black widow dragline spider silk. 1D 13C-13C spin-diffusion methods described here apply in select cases in which the 1D 13C solid-state NMR spectrum displays chemical shift-resolved moieties. This is analogous to the selective 1D nuclear Overhauser effect spectroscopy (NOESY) experiment utilized in liquid-state NMR as a faster (1D instead of 2D) and often less ambiguous (direct sampling of the time domain data, coupled with increased signal averaging) alternative to 2D NOESY. Selective 1D 13C-13C spin-diffusion methods are more time-efficient than their 2D counterparts such as proton-driven spin diffusion (PDSD) and dipolar-assisted rotational resonance. The additional time gained enables measurements of 13C-13C spin-diffusion buildup curves and extraction of spin-diffusion time constants TSD, yielding detailed structural information. Specifically, selective 1D DARR difference buildup curves applied to 13C-enriched hybrid poplar woody stems confirm strong spatial interaction between lignin and acetylated xylan polymers within poplar plant secondary cell walls, and an interpolymer distance of ∼0.45-0.5 nm was estimated. Additionally, Tyr/Gly long-range correlations were observed on isotopically enriched black widow spider dragline silks.
Collapse
Affiliation(s)
- Bennett Addison
- Renewable Resources and Enabling Sciences Center, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Dillan Stengel
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030, United States
| | - Vivek S Bharadwaj
- Renewable Resources and Enabling Sciences Center, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Renee M Happs
- Renewable Resources and Enabling Sciences Center, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Crissa Doeppke
- Renewable Resources and Enabling Sciences Center, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Yannick J Bomble
- Biosciences Center, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Gregory P Holland
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030, United States
| | - Anne E Harman-Ware
- Renewable Resources and Enabling Sciences Center, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| |
Collapse
|
3
|
Xu D, Shi X, Thompson F, Weber WS, Mou Q, Yarger JL. Protein secondary structure of Green Lynx spider dragline silk investigated by solid-state NMR and X-ray diffraction. Int J Biol Macromol 2015; 81:171-9. [PMID: 26226457 PMCID: PMC4874476 DOI: 10.1016/j.ijbiomac.2015.07.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/23/2015] [Accepted: 07/24/2015] [Indexed: 01/22/2023]
Abstract
In this study, the secondary structure of the major ampullate silk from Peucetia viridans (Green Lynx) spiders is characterized by X-ray diffraction and solid-state NMR spectroscopy. From X-ray diffraction measurement, β-sheet nanocrystallites were observed and found to be highly oriented along the fiber axis, with an orientational order, fc≈0.98. The size of the nanocrystallites was determined to be on average 2.5nm×3.3nm×3.8nm. Besides a prominent nanocrystalline region, a partially oriented amorphous region was also observed with an fa≈0.89. Two-dimensional (13)C-(13)C through-space and through-bond solid-state NMR experiments were employed to elucidate structure details of P. viridans silk proteins. It reveals that β-sheet nanocrystallites constitutes 40.0±1.2% of the protein and are dominated by alanine-rich repetitive motifs. Furthermore, based upon the NMR data, 18±1% of alanine, 60±2% glycine and 54±2% serine are incorporated into helical conformations.
Collapse
Affiliation(s)
- Dian Xu
- Department of Chemistry and Biochemistry, Magnetic Resonance Research Center, Arizona State University, Tempe, AZ 85287-1604, United States
| | - Xiangyan Shi
- Department of Chemistry and Biochemistry, Magnetic Resonance Research Center, Arizona State University, Tempe, AZ 85287-1604, United States
| | - Forrest Thompson
- Department of Chemistry and Biochemistry, Magnetic Resonance Research Center, Arizona State University, Tempe, AZ 85287-1604, United States
| | - Warner S Weber
- Department of Chemistry and Biochemistry, Magnetic Resonance Research Center, Arizona State University, Tempe, AZ 85287-1604, United States
| | - Qiushi Mou
- Department of Chemistry and Biochemistry, Magnetic Resonance Research Center, Arizona State University, Tempe, AZ 85287-1604, United States
| | - Jeffery L Yarger
- Department of Chemistry and Biochemistry, Magnetic Resonance Research Center, Arizona State University, Tempe, AZ 85287-1604, United States.
| |
Collapse
|
4
|
Xu D, Guo C, Holland GP. Probing the Impact of Acidification on Spider Silk Assembly Kinetics. Biomacromolecules 2015; 16:2072-9. [PMID: 26030517 DOI: 10.1021/acs.biomac.5b00487] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Spiders utilize fine adjustment of the physicochemical conditions within its silk spinning system to regulate spidroin assembly into solid silk fibers with outstanding mechanical properties. However, the exact mechanism about which this occurs remains elusive and is still hotly debated. In this study, the effect of acidification on spider silk assembly was investigated on native spidroins from the major ampullate (MA) gland fluid excised from Latrodectus hesperus (Black Widow) spiders. Incubating the protein-rich MA silk gland fluid at acidic pH conditions results in the formation of silk fibers that are 10-100 μm in length and ∼2 μm in diameter as judged by optical and electron microscope methods. The in vitro spider silk assembly kinetics were monitored as a function of pH with a (13)C solid-state MAS NMR approach. The results confirm the importance of acidic pH in the spider silk self-assembly process with observation of a sigmoidal nucleation-elongation kinetic profile. The rates of nucleation and elongation as well as the percentage of β-sheet structure in the grown fibers depend on the pH. These results confirm the importance of an acidic pH gradient along the spinning duct for spider silk formation and provide a powerful spectroscopic approach to probe the kinetics of spider silk formation under various biochemical conditions.
Collapse
Affiliation(s)
- Dian Xu
- †Department of Chemistry and Biochemistry, Magnetic Resonance Research Center, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Chengchen Guo
- †Department of Chemistry and Biochemistry, Magnetic Resonance Research Center, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Gregory P Holland
- ‡Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, California 92182-1030, United States
| |
Collapse
|
5
|
Shi X, Holland GP, Yarger JL. Molecular Dynamics of Spider Dragline Silk Fiber Investigated by 2H MAS NMR. Biomacromolecules 2015; 16:852-9. [DOI: 10.1021/bm5017578] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Xiangyan Shi
- Department
of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Gregory P. Holland
- Department
of Chemistry and Biochemistry, San Diego State University, 5500
Campanile Drive, San Diego, California 92182-1030, United States
| | - Jeffery L. Yarger
- Department
of Chemistry and Biochemistry, Magnetic Resonance Research Center, Arizona State University, Tempe, Arizona 85287-1604, United States
| |
Collapse
|
6
|
Exploring the backbone dynamics of native spider silk proteins in Black Widow silk glands with solution-state NMR spectroscopy. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.06.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Shi X, Yarger JL, Holland GP. Elucidating proline dynamics in spider dragline silk fibre using 2H–13C HETCOR MAS NMR. Chem Commun (Camb) 2014; 50:4856-9. [DOI: 10.1039/c4cc00971a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2H–13C HETCOR MAS NMR is performed on 2H/13C/15N-Pro enriched A. aurantia dragline silk. Proline dynamics are extracted from 2H NMR line shapes and T1 in a site-specific manner to elucidate the backbone and side chain molecular dynamics for the MaSp2 GPGXX β-turn regions for spider dragline silk in the dry and wet, supercontracted states.
Collapse
Affiliation(s)
- Xiangyan Shi
- Department of Chemistry and Biochemistry
- Magnetic Resonance Research Center
- Arizona State University
- Tempe, USA
| | - Jeffery L. Yarger
- Department of Chemistry and Biochemistry
- Magnetic Resonance Research Center
- Arizona State University
- Tempe, USA
| | - Gregory P. Holland
- Department of Chemistry and Biochemistry
- Magnetic Resonance Research Center
- Arizona State University
- Tempe, USA
| |
Collapse
|