1
|
Rashid MH, Sen P. Recent Advancements in Biosensors for the Detection and Characterization of Amyloids: A Review. Protein J 2024; 43:656-674. [PMID: 38824466 DOI: 10.1007/s10930-024-10205-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2024] [Indexed: 06/03/2024]
Abstract
Modern medicine has increased the human lifespan. However, with an increase in average lifespan risk of amyloidosis increases. Amyloidosis is a condition characterized by protein misfolding and aggregation. Early detection of amyloidosis is crucial, yet conventional diagnostic methods are costly and lack precision, necessitating innovative tools. This review explores recent advancements in diverse amyloid detection methodologies, highlighting the need for interdisciplinary research to develop a miniaturized electrochemical biosensor leveraging nanotechnology. However, the diagnostics industry faces obstacles such as skilled labor shortages, standardized selection processes, and concurrent multi-analyte identification challenges. Research efforts are focused on integrating electrochemical techniques into clinical applications and diagnostics, with the successful transition of miniaturized technologies from development to testing posing a significant hurdle. Label-free transduction techniques like voltammetry and electrochemical impedance spectroscopy (EIS) have gained traction due to their rapid, cost-effective, and user-friendly nature.
Collapse
Affiliation(s)
- Md Harun Rashid
- Centre for Bio Separation Technology (CBST), Technology Tower, Vellore Institute of Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Priyankar Sen
- Centre for Bio Separation Technology (CBST), Technology Tower, Vellore Institute of Technology, VIT University, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
2
|
Suprun EV, Radko SP, Kozin SA, Mitkevich VA, Makarov AA. Electrochemical Analysis in Studying β-Amyloid Aggregation. BIOCHEMISTRY (MOSCOW) 2023; 88:S88-S104. [PMID: 37069116 DOI: 10.1134/s0006297923140067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
β-amyloid (Aβ) is comprised of a group of peptides formed as a result of cleavage of the amyloid precursor protein by secretases. Aβ aggregation is considered as a central event in pathogenesis of Alzheimer's disease, the most common human neurodegenerative disorder. Molecular mechanisms of Aβ aggregation have intensively being investigated using synthetic Aβ peptides by methods based on monitoring of aggregates, including determination of their size and structure. In this review, an orthogonal approach to the study of Aβ aggregation is considered, which relies on electrochemical registration of the loss of peptide monomers. Electrochemical analysis of Aβ (by voltammetry and amperometric flow injection analysis) is based on registration of the oxidation signal of electroactive amino acid residues of the peptide on an electrode surface. The Aβ oxidation signal disappears, when the peptide is included in the aggregate. The advantages and disadvantages of electrochemical analysis for the study of spontaneous and metal-induced aggregation of Aβ, comparative analysis of various peptide isoforms, and study of the process of complexation of metal ions with the metal-binding domain of Aβ are discussed. It is concluded that the combined use of the electrochemical method and the methods based on detection of Aβ aggregates makes it possible to obtain more complete information about the mechanisms of peptide aggregation.
Collapse
Affiliation(s)
- Elena V Suprun
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Orekhovich Institute of Biomedical Chemistry, Moscow, 119121, Russia
| | - Sergey P Radko
- Orekhovich Institute of Biomedical Chemistry, Moscow, 119121, Russia
| | - Sergey A Kozin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Vladimir A Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
3
|
Suprun EV, Budnikov HC. Bioelectrochemistry as a Field of Analysis: Historical Aspects and Current Status. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822060168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Suprun EV, Daboss EV, Pleshakov VM, Vokhmyanina DV, Radko SP, Karyakin AA, Kozin SA, Makarov AA, Mitkevich VA. Application of Prussian Blue modified carbon electrodes for amperometric detection of amyloid-β peptides by flow injection analysis. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Suprun EV. Direct electrochemistry of proteins and nucleic acids: The focus on 3D structure. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.106983] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
6
|
Kirk KA, Vasilescu A, Andreescu D, Senarathna D, Mondal S, Andreescu S. Collision-Based Electrochemical Detection of Lysozyme Aggregation. Anal Chem 2021; 93:2026-2037. [PMID: 33416307 DOI: 10.1021/acs.analchem.0c03578] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Proteins are utilized across many biomedical and pharmaceutical industries; therefore, methods for rapid and accurate monitoring of protein aggregation are needed to ensure proper product quality. Although these processes have been previously studied, it is difficult to comprehensively evaluate protein folding and aggregation by traditional characterization techniques such as atomic force microscopy (AFM), electron microscopy, or X-ray diffraction, which require sample pre-treatment and do not represent native state proteins in solution. Herein, we report early tracking of lysozyme (Lyz) aggregation states by using single-particle collision electrochemistry (SPCE) of silver nanoparticle (AgNP) redox probes. The method relies on monitoring the rapid interaction of Lyz with AgNPs, which decreases the number of single AgNPs available for collisions and ultimately the frequency of oxidative impacts in the chronoamperometric profile. When Lyz is in a non-aggregated monomeric form, the protein forms a homogeneous coverage onto the surface of AgNPs, stabilizing the particles. When Lyz is aggregated, part of the AgNP surface remains uncoated, promoting the agglomeration of Lyz-AgNP conjugates. The frequency of AgNP impacts decreases with increasing aggregation time, providing a metric to track protein aggregation. Visualizations of integrated oxidation charge-transfer data displayed significant differences between the charge transfer per impact for AgNP samples alone and in the presence of non-aggregated and aggregated Lyz with 99% confidence using parametric ANOVA tests. Electrochemical results revealed meaningful associations with UV-vis, circular dichroism, and AFM, demonstrating that SPCE can be used as an alternative method for studying protein aggregation. This electrochemical technique could serve as a powerful tool to indirectly evaluate protein stability and screen protein samples for formation of aggregates.
Collapse
Affiliation(s)
- Kevin A Kirk
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, United States
| | - Alina Vasilescu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, Sector 6, 060101 Bucharest, Romania
| | - Daniel Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, United States
| | - Dinushani Senarathna
- Department of Mathematics, Clarkson University, Potsdam, New York 13699-5810, United States
| | - Sumona Mondal
- Department of Mathematics, Clarkson University, Potsdam, New York 13699-5810, United States
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, United States
| |
Collapse
|
7
|
Histidine-Lacked Aβ(1–16) Peptides: pH-Dependent Conformational Changes in Metal Ion Binding. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10048-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Su H, Jin Y, Noroozifar M, Kerman K. Electrochemical Detection of Isoform‐Specific Interaction between Apolipoprotein E and Amyloid‐β. ChemElectroChem 2018. [DOI: 10.1002/celc.201800985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Han Su
- Department of Physical and Environmental SciencesUniversity of Toronto Scarborough Toronto Ontario M1 C 1 A4 Canada
| | - Yiyun Jin
- Department of Physical and Environmental SciencesUniversity of Toronto Scarborough Toronto Ontario M1 C 1 A4 Canada
| | - Meissam Noroozifar
- Department of ChemistryUniversity of Sistan and Baluchestan Zahedan Iran
| | - Kagan Kerman
- Department of Physical and Environmental SciencesUniversity of Toronto Scarborough Toronto Ontario M1 C 1 A4 Canada
| |
Collapse
|
9
|
Suprun EV, Radko SP, Kozin SA, Mitkevich VA, Makarov AA. Electrochemical detection of Zn(II)-induced amyloid-β aggregation: Insights into aggregation mechanisms. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.10.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10
|
Biosensors for the Detection of Interaction between Legionella pneumophila Collagen-Like Protein and Glycosaminoglycans. SENSORS 2018; 18:s18082668. [PMID: 30110899 PMCID: PMC6111780 DOI: 10.3390/s18082668] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 01/18/2023]
Abstract
The adhesin Legionella collagen-like (Lcl) protein can bind to extracellular matrix components and mediate the binding of Legionella pneumophila to host cells. In this study, electrochemical impedance spectroscopy (EIS) and surface plasmon resonance (SPR)-based biosensors were employed to characterize these interactions between glycosaminoglycans (GAGs) and the adhesin Lcl protein. Fucoidan displayed a high affinity (KD 18 nM) for Lcl protein. Chondroitin sulfate A and dermatan sulfate differ in the position of a carboxyl group replacing D-glucuronate with D-iduronate. Our results indicated that the presence of D-iduronate in dermatan sulfate strongly hindered its interaction with Lcl. These biophysical studies provided valuable information in our understanding of adhesin-ligand interactions related to Legionella pneumophila infections.
Collapse
|
11
|
Vasilescu A, Ye R, Boulahneche S, Lamraoui S, Jijie R, Medjram MS, Gáspár S, Singh SK, Kurungot S, Melinte S, Boukherroub R, Szunerits S. Porous reduced graphene oxide modified electrodes for the analysis of protein aggregation. Part 2: Application to the analysis of calcitonin containing pharmaceutical formulation. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.02.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Sun L, Zhong Y, Gui J, Wang X, Zhuang X, Weng J. A hydrogel biosensor for high selective and sensitive detection of amyloid-beta oligomers. Int J Nanomedicine 2018; 13:843-856. [PMID: 29467574 PMCID: PMC5811178 DOI: 10.2147/ijn.s152163] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive cognitive and memory impairment. It is the most common neurological disease that causes dementia. Soluble amyloid-beta oligomers (AβO) in blood or cerebrospinal fluid (CSF) are the pathogenic biomarker correlated with AD. Methods A simple electrochemical biosensor using graphene oxide/gold nanoparticles (GNPs) hydrogel electrode was developed in this study. Thiolated cellular prion protein (PrPC) peptide probe was immobilized on GNPs of the hydrogel electrode to construct an AβO biosensor. Electrochemical impedance spectroscopy was utilized for AβO analysis. Results The specific binding between AβO and PrPC probes on the hydrogel electrode resulted in an increase in the electron-transfer resistance. The biosensor showed high specificity and sensitivity for AβO detection. It could selectively differentiate AβO from amyloid-beta (Aβ) monomers or fibrils. Meanwhile, it was highly sensitive to detect as low as 0.1 pM AβO in artificial CSF or blood plasma. The linear range for AβO detection is from 0.1 pM to 10 nM. Conclusion This biosensor could be used as a cost-effective tool for early diagnosis of AD due to its high electrochemical performance and bionic structure.
Collapse
Affiliation(s)
- Liping Sun
- Key Laboratory of Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University
| | - Yong Zhong
- Key Laboratory of Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University
| | - Jie Gui
- Key Laboratory of Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University
| | - Xianwu Wang
- Key Laboratory of Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University
| | - Xiaorong Zhuang
- Department of Neurology, The Affiliated Zhongshan Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Jian Weng
- Key Laboratory of Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University
| |
Collapse
|
13
|
Temoçin Z, Kim E, Li J, Panzella L, Alfieri ML, Napolitano A, Kelly DL, Bentley WE, Payne GF. The Analgesic Acetaminophen and the Antipsychotic Clozapine Can Each Redox-Cycle with Melanin. ACS Chem Neurosci 2017; 8:2766-2777. [PMID: 28945963 DOI: 10.1021/acschemneuro.7b00310] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Melanins are ubiquitous but their complexity and insolubility has hindered characterization of their structures and functions. We are developing electrochemical reverse engineering methodologies that focus on properties and especially on redox properties. Previous studies have shown that melanins (i) are redox-active and can rapidly and repeatedly exchange electrons with diffusible oxidants and reductants, and (ii) have redox potentials in midregion of the physiological range. These properties suggest the functional activities of melanins will depend on their redox context. The brain has a complex redox context with steep local gradients in O2 that can promote redox-cycling between melanin and diffusible redox-active chemical species. Here, we performed in vitro reverse engineering studies and report that melanins can redox-cycle with two common redox-active drugs. Experimentally, we used two melanin models: a convenient natural melanin derived from cuttlefish (Sepia melanin) and a synthetic cysteinyldopamine-dopamine core-shell model of neuromelanin. One drug, acetaminophen (APAP), has been used clinically for over a century, and recent studies suggest that low doses of APAP can protect the brain from oxidative-stress-induced toxicity and neurodegeneration, while higher doses can have toxic effects in the brain. The second drug, clozapine (CLZ), is a second generation antipsychotic with polypharmacological activities that remain incompletely understood. These in vitro observations suggest that the redox activities of drugs may be relevant to their modes-of-action, and that melanins may interact with drugs in ways that affect their activities, metabolism, and toxicities.
Collapse
Affiliation(s)
- Zülfikar Temoçin
- Department
of Chemistry, Science and Arts Faculty, Kırıkkale University, Yahs̨ihan,71450 Kırıkkale, Turkey
- Institute
for Bioscience and Biotechnology Research, University of Maryland, 5115 Plant Sciences Building, College Park, Maryland 20742, United States
| | - Eunkyoung Kim
- Institute
for Bioscience and Biotechnology Research, University of Maryland, 5115 Plant Sciences Building, College Park, Maryland 20742, United States
- Fischell
Department of Bioengineering University of Maryland, College Park, Maryland 20742, United States
| | - Jinyang Li
- Institute
for Bioscience and Biotechnology Research, University of Maryland, 5115 Plant Sciences Building, College Park, Maryland 20742, United States
- Fischell
Department of Bioengineering University of Maryland, College Park, Maryland 20742, United States
| | - Lucia Panzella
- Department
of Chemical Sciences, University of Naples Federico II, Via Cintia
4, I-80126 Naples, Italy
| | - Maria Laura Alfieri
- Department
of Chemical Sciences, University of Naples Federico II, Via Cintia
4, I-80126 Naples, Italy
| | - Alessandra Napolitano
- Department
of Chemical Sciences, University of Naples Federico II, Via Cintia
4, I-80126 Naples, Italy
| | - Deanna L. Kelly
- Maryland
Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland 21228, United States
| | - William E. Bentley
- Institute
for Bioscience and Biotechnology Research, University of Maryland, 5115 Plant Sciences Building, College Park, Maryland 20742, United States
- Fischell
Department of Bioengineering University of Maryland, College Park, Maryland 20742, United States
| | - Gregory F. Payne
- Institute
for Bioscience and Biotechnology Research, University of Maryland, 5115 Plant Sciences Building, College Park, Maryland 20742, United States
- Fischell
Department of Bioengineering University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
14
|
Vasilescu A, Boulahneche S, Chekin F, Gáspár S, Medjram MS, Diagne AA, Singh SK, Kurungot S, Boukherroub R, Szunerits S. Porous reduced graphene oxide modified electrodes for the analysis of protein aggregation. Part 1: Lysozyme aggregation at pH 2 and 7.4. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.09.083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Suprun EV, Radko SP, Farafonova TE, Mitkevich VA, Makarov AA, Archakov AI, Shumyantseva VV. Application of an Electrochemical Method to Evaluation of Amyloid-β Aggregation Inhibitors: Testing the RGKLVFFGR-NH2Peptide Antiaggregant. ELECTROANAL 2017. [DOI: 10.1002/elan.201700499] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Elena V. Suprun
- Institute of Biomedical Chemistry; Pogodinskaya Street 10/8 Moscow 119121 Russia
| | - Sergey P. Radko
- Institute of Biomedical Chemistry; Pogodinskaya Street 10/8 Moscow 119121 Russia
| | | | - Vladimir A. Mitkevich
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Vavilov Street 32 Moscow 119991 Russia
| | - Alexander A. Makarov
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Vavilov Street 32 Moscow 119991 Russia
| | | | | |
Collapse
|
16
|
Suprun EV, Radko SP, Andreev EA, Khmeleva SA, Kozin SA, Makarov AA, Archakov AI, Shumyantseva VV. Electrochemical detection of Zn(II)- and Cu(II)-induced amyloid-β aggregation: Quantitative aspects and application to amyloid-β isoforms. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Alvarez de Eulate E, O'Sullivan S, Arrigan DWM. Electrochemically Induced Formation of Cytochrome c
Oligomers at Soft Interfaces. ChemElectroChem 2017. [DOI: 10.1002/celc.201600851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Eva Alvarez de Eulate
- Nanochemistry Research Institute & Department of Chemistry; Curtin University; GPO Box U1987 Perth Western Australia, Australia 6845
| | - Shane O'Sullivan
- Nanochemistry Research Institute & Department of Chemistry; Curtin University; GPO Box U1987 Perth Western Australia, Australia 6845
| | - Damien W. M. Arrigan
- Nanochemistry Research Institute & Department of Chemistry; Curtin University; GPO Box U1987 Perth Western Australia, Australia 6845
| |
Collapse
|
18
|
Suprun EV, Radko SP, Khmeleva SA, Mitkevich VA, Archakov AI, Makarov AA, Shumyantseva VV. Electrochemical oxidation of amyloid-beta peptide isoforms on carbon screen printed electrodes. Electrochem commun 2017. [DOI: 10.1016/j.elecom.2016.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
19
|
Azimzadeh M, Nasirizadeh N, Rahaie M, Naderi-Manesh H. Early detection of Alzheimer's disease using a biosensor based on electrochemically-reduced graphene oxide and gold nanowires for the quantification of serum microRNA-137. RSC Adv 2017. [DOI: 10.1039/c7ra09767k] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Serum miR-137 is quantified for the early detection of Alzheimer's disease using a electrochemically reduced graphene oxide and gold nanowire modified electrode.
Collapse
Affiliation(s)
- Mostafa Azimzadeh
- Stem Cell Biology Research Center
- Yazd Reproductive Sciences Institute
- Shahid Sadoughi University of Medical Sciences
- Yazd
- Iran
| | - Navid Nasirizadeh
- Department of Textile and Polymer Engineering
- Yazd Branch
- Islamic Azad University
- Yazd
- Iran
| | - Mahdi Rahaie
- Department of Life Science Engineering
- Faculty of New Sciences and Technologies
- University of Tehran
- Tehran
- Iran
| | - Hossein Naderi-Manesh
- Department of Nanobiotechnology/Biophysics
- Faculty of Biological Sciences
- Tarbiat Modares University
- Tehran
- Iran
| |
Collapse
|
20
|
Enache TA, Oliveira-Brett AM. Alzheimer's disease amyloid beta peptides in vitro electrochemical oxidation. Bioelectrochemistry 2016; 114:13-23. [PMID: 27855361 DOI: 10.1016/j.bioelechem.2016.11.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 12/29/2022]
Abstract
The oxidative behaviour of the human amyloid beta (Aβ1-40 and Aβ1-42) peptides and a group of similar peptides: control inverse (Aβ40-1 and Aβ42-1), mutants (Aβ1-40Phe10 and Aβ1-40Nle35), rat Aβ1-40Rat, and fragments (Aβ1-28, Aβ1-16, Aβ10-20, Aβ12-28, and Aβ17-42), in solution or adsorbed, at a glassy carbon electrode, by cyclic and differential pulse voltammetry, were investigated and compared. Structurally the Aβ1-40 and Aβ1-42 sequences contain five electroactive amino acid residues, one tyrosine (Tyr10), three histidines (His6, His13 and His14) and one methionine (Met35). The Aβ peptide 3D structure influenced the exposure of the redox residues to the electrode surface and their oxidation peak currents. Depending on the amino acid sequence length and content, the Aβ peptides gave one or two oxidation peaks. The first electron transfer reaction corresponded to the tyrosine amino acid residue oxidation, and the second to both histidines and methionine amino acid residues. The highest contribution to the second oxidation peak current was from His13, followed by His14 and His6 residues, and Met35 residue had the lowest contribution. The Aβ peptides electron transfer depended on peptide hydrophobicity and 3D structure, the redox residues position in the sequence, the redox residues close to N-termini giving the highest oxidation peak currents.
Collapse
Affiliation(s)
- Teodor Adrian Enache
- Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Ana Maria Oliveira-Brett
- Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal.
| |
Collapse
|
21
|
Direct electrochemical oxidation of amyloid-β peptides via tyrosine, histidine, and methionine residues. Electrochem commun 2016. [DOI: 10.1016/j.elecom.2016.02.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
22
|
Suprun EV, Khmeleva SA, Kiseleva YY, Radko SP, Archakov AI, Shumyantseva VV. Quantitative Aspects of Electrochemical Detection of Amyloid-β Aggregation. ELECTROANAL 2016. [DOI: 10.1002/elan.201501111] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Elena V. Suprun
- Institute of Biomedical Chemistry; Pogodinskaya Street, 10/8 Moscow 119121 Russia
| | - Svetlana A. Khmeleva
- Institute of Biomedical Chemistry; Pogodinskaya Street, 10/8 Moscow 119121 Russia
| | - Yana Y. Kiseleva
- Institute of Biomedical Chemistry; Pogodinskaya Street, 10/8 Moscow 119121 Russia
| | - Sergey P. Radko
- Institute of Biomedical Chemistry; Pogodinskaya Street, 10/8 Moscow 119121 Russia
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Vavilov Street, 32 Moscow 119991 Russia
| | | | | |
Collapse
|
23
|
Biosensors in Health Care: The Milestones Achieved in Their Development towards Lab-on-Chip-Analysis. Biochem Res Int 2016; 2016:3130469. [PMID: 27042353 PMCID: PMC4794574 DOI: 10.1155/2016/3130469] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/04/2016] [Accepted: 01/19/2016] [Indexed: 11/17/2022] Open
Abstract
Immense potentiality of biosensors in medical diagnostics has driven scientists in evolution of biosensor technologies and innovating newer tools in time. The cornerstone of the popularity of biosensors in sensing wide range of biomolecules in medical diagnostics is due to their simplicity in operation, higher sensitivity, ability to perform multiplex analysis, and capability to be integrated with different function by the same chip. There remains a huge challenge to meet the demands of performance and yield to its simplicity and affordability. Ultimate goal stands for providing point-of-care testing facility to the remote areas worldwide, particularly the developing countries. It entails continuous development in technology towards multiplexing ability, fabrication, and miniaturization of biosensor devices so that they can provide lab-on-chip-analysis systems to the community.
Collapse
|
24
|
Suprun EV, Khmeleva SA, Radko SP, Archakov AI, Shumyantseva VV. Electrochemical Analysis of Amyloid-β Domain 1-16 Isoforms and Their Complexes with Zn(II) Ions. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2015.11.111] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Suprun EV, Zaryanov NV, Radko SP, Kulikova AA, Kozin SA, Makarov AA, Archakov AI, Shumyantseva VV. Tyrosine Based Electrochemical Analysis of Amyloid-β Fragment (1-16) Binding to Metal(II) Ions. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.01.066] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Shumyantseva VV, Bulko TV, Suprun EV, Kuzikov AV, Agafonova LE, Archakov AI. [Electrochemical methods for biomedical investigations]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2015; 61:188-202. [PMID: 25978386 DOI: 10.18097/pbmc20156102188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the review, authors discussed recently published experimental data concerning highly sensitive electrochemical methods and technologies for biomedical investigations in the postgenomic era. Developments in electrochemical biosensors systems for the analysis of various bio objects are also considered: cytochrome P450s, cardiac markers, bacterial cells, the analysis of proteins based on electro oxidized amino acids as a tool for analysis of conformational events. The electroanalysis of catalytic activity of cytochromes P450 allowed developing system for screening of potential substrates, inhibitors or modulators of catalytic functions of this class of hemoproteins. The highly sensitive quartz crystal microbalance (QCM) immunosensor has been developed for analysis of bio affinity interactions of antibodies with troponin I in plasma. The QCM technique allowed real-time monitoring of the kinetic differences in specific interactions and nonspecific sorption, with out multiple labeling procedures and separation steps. The affinity binding process was characterized by the association (ka) and the dissociation (kd) kinetic constants and the equilibrium association (K) constant, calculated using experimental data. Based on the electroactivity of bacterial cells, the electrochemical system for determination of sensitivity of the microbial cells to antibiotics cefepime, ampicillin, amikacin, and erythromycin was proposed. It was shown that the minimally detectable cell number corresponds to 106 CFU per electrode. The electrochemical method allows estimating the degree of E.coli JM109 cells resistance to antibiotics within 2-5 h. Electrosynthesis of polymeric analogs of antibodies for myoglobin (molecularly imprinted polymer, MIP) on the surface of graphite screen-printed electrodes as sensor elements with o- phenylenediamine as the functional monomer was developed. Molecularly imprinted polymers demonstrate selective complementary binding of a template protein molecule (myoglobin) by the "key-lock" principle.
Collapse
Affiliation(s)
- V V Shumyantseva
- Institute of Biomedical Chemistry, Moscow, Russia; IBMC-EcoBioPharm Company, Moscow, Russia
| | - T V Bulko
- Institute of Biomedical Chemistry, Moscow, Russia
| | - E V Suprun
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A V Kuzikov
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - A I Archakov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
27
|
Paleček E, Tkáč J, Bartošík M, Bertók T, Ostatná V, Paleček J. Electrochemistry of nonconjugated proteins and glycoproteins. Toward sensors for biomedicine and glycomics. Chem Rev 2015; 115:2045-108. [PMID: 25659975 PMCID: PMC4360380 DOI: 10.1021/cr500279h] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Indexed: 02/07/2023]
Affiliation(s)
- Emil Paleček
- Institute
of Biophysics Academy of Science of the Czech Republic, v.v.i., Královopolská
135, 612 65 Brno, Czech Republic
| | - Jan Tkáč
- Institute
of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Martin Bartošík
- Regional
Centre for Applied Molecular Oncology, Masaryk
Memorial Cancer Institute, Žlutý kopec 7, 656 53 Brno, Czech Republic
| | - Tomáš Bertók
- Institute
of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Veronika Ostatná
- Institute
of Biophysics Academy of Science of the Czech Republic, v.v.i., Královopolská
135, 612 65 Brno, Czech Republic
| | - Jan Paleček
- Central
European Institute of Technology, Masaryk
University, Kamenice
5, 625 00 Brno, Czech Republic
| |
Collapse
|
28
|
|
29
|
V. Shumyantseva V, V. Suprun E, V. Bulko T, I. Archakov A. Electrochemical methods for detection of post-translational modifications of proteins. Biosens Bioelectron 2014; 61:131-9. [DOI: 10.1016/j.bios.2014.05.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/11/2014] [Accepted: 05/01/2014] [Indexed: 01/04/2023]
|
30
|
Suprun EV, Shumyantseva VV, Archakov AI. Protein Electrochemistry: Application in Medicine. A Review. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.03.089] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Miodek A, Vidic J, Sauriat-Dorizon H, Richard CA, Le Goffic R, Korri-Youssoufi H, Chevalier C. Electrochemical Detection of the Oligomerization of PB1-F2 Influenza A Virus Protein in Infected Cells. Anal Chem 2014; 86:9098-105. [DOI: 10.1021/ac5018056] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anna Miodek
- CNRS UMR-8182,
Institut de Chimie Moléculaire et de Matériaux d’Orsay,
Equipe de Chimie Bioorganique et Bioinorganique, Bâtiment 420, 91405 Orsay, France
- INRA, Unité
de Virologie et Immunologie Moléculaires, UR892, Domaine de Vilvert, F-78350 Centre de Jouy-en-Josas, France
| | - Jasmina Vidic
- INRA, Unité
de Virologie et Immunologie Moléculaires, UR892, Domaine de Vilvert, F-78350 Centre de Jouy-en-Josas, France
| | - Helene Sauriat-Dorizon
- CNRS UMR-8182,
Institut de Chimie Moléculaire et de Matériaux d’Orsay,
Equipe de Chimie Bioorganique et Bioinorganique, Bâtiment 420, 91405 Orsay, France
| | - Charles-Adrien Richard
- INRA, Unité
de Virologie et Immunologie Moléculaires, UR892, Domaine de Vilvert, F-78350 Centre de Jouy-en-Josas, France
| | - Ronan Le Goffic
- INRA, Unité
de Virologie et Immunologie Moléculaires, UR892, Domaine de Vilvert, F-78350 Centre de Jouy-en-Josas, France
| | - Hafsa Korri-Youssoufi
- CNRS UMR-8182,
Institut de Chimie Moléculaire et de Matériaux d’Orsay,
Equipe de Chimie Bioorganique et Bioinorganique, Bâtiment 420, 91405 Orsay, France
| | - Christophe Chevalier
- INRA, Unité
de Virologie et Immunologie Moléculaires, UR892, Domaine de Vilvert, F-78350 Centre de Jouy-en-Josas, France
| |
Collapse
|
32
|
Chen S, Zhang L, Long Y, Zhou F. Electroanalytical Sensors and Methods for Assays and Studies of Neurological Biomarkers. ELECTROANAL 2014. [DOI: 10.1002/elan.201400040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
33
|
Neumann B, Yarman A, Wollenberger U, Scheller F. Characterization of the enhanced peroxidatic activity of amyloid β peptide–hemin complexes towards neurotransmitters. Anal Bioanal Chem 2014; 406:3359-64. [DOI: 10.1007/s00216-014-7822-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/28/2014] [Accepted: 04/04/2014] [Indexed: 11/28/2022]
|