1
|
|
2
|
Moazzen S, Zarei AR, Mardi K. Green Sample Preparation Based on Directly Suspended Droplet Microextraction using Deep Eutectic Solvent for Ultra-Trace Quantification of Nitroaromatic Explosives by High Performance Liquid Chromatography. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821110083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Wan Q, Liu H, Deng Z, Bu J, Li T, Yang Y, Zhong S. A critical review of molecularly imprinted solid phase extraction technology. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02744-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Rossignol J, Dujourdy L, Stuerga D, Cayot P, Gougeon RD, Bou-Maroun E. A First Tentative for Simultaneous Detection of Fungicides in Model and Real Wines by Microwave Sensor Coupled to Molecularly Imprinted Sol-Gel Polymers. SENSORS (BASEL, SWITZERLAND) 2020; 20:s20216224. [PMID: 33142813 PMCID: PMC7662697 DOI: 10.3390/s20216224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/23/2020] [Accepted: 10/29/2020] [Indexed: 05/11/2023]
Abstract
A molecularly imprinted silica (MIS) coupled to a microwave sensor was used to detect three fungicides (iprodione, procymidone and pyrimethanil) present in most French wines. Chemometric methods were applied to interpret the microwave spectra and to correlate microwave signals and fungicide concentrations in a model wine medium, and in white and red Burgundy wines. The developed microwave sensor coupled to an MIS and to its control, a nonimprinted silica (NIS), was successfully applied to detect the three fungicides present in trace levels (ng L-1) in a model wine. The MIS sensor discriminated the fungicide concentrations better than the NIS sensor. Partial Least Squares models were suitable for determining iprodione in white and red wines. A preliminary method validation was applied to iprodione in the white and red wines. It showed a limit of detection (LOD) lower than 30 ng L-1 and a recovery percentage between 90 and 110% when the iprodione concentration was higher than the LOD. The determined concentrations were below the authorized level by far.
Collapse
Affiliation(s)
- Jérôme Rossignol
- Laboratoire Interdisciplinaire Carnot de Bourgogne, CNRS UMR 6303, Departement Interface, GERM, University Bourgogne Franche-Comté, 21078 Dijon, France; (J.R.); (D.S.)
| | - Laurence Dujourdy
- Service d’Appui à la Recherche, AgroSup Dijon, F-21000 Dijon, France;
| | - Didier Stuerga
- Laboratoire Interdisciplinaire Carnot de Bourgogne, CNRS UMR 6303, Departement Interface, GERM, University Bourgogne Franche-Comté, 21078 Dijon, France; (J.R.); (D.S.)
| | - Philippe Cayot
- AgroSup Dijon, University Bourgogne Franche-Comté, PAM UMR A 02.102, Procédés Alimentaires et Microbiologiques, F-21000 Dijon, France; (P.C.); (R.D.G.)
| | - Régis D. Gougeon
- AgroSup Dijon, University Bourgogne Franche-Comté, PAM UMR A 02.102, Procédés Alimentaires et Microbiologiques, F-21000 Dijon, France; (P.C.); (R.D.G.)
- Institut Universitaire de la Vigne et du Vin Jules Guyot, AgroSup Dijon, University Bourgogne Franche-Comté, PAM UMR A 02.102, Procédés Alimentaires et Microbiologiques, F-21000 Dijon, France
| | - Elias Bou-Maroun
- AgroSup Dijon, University Bourgogne Franche-Comté, PAM UMR A 02.102, Procédés Alimentaires et Microbiologiques, F-21000 Dijon, France; (P.C.); (R.D.G.)
- Correspondence: ; Tel.: +33-3-80-77-40-80
| |
Collapse
|
5
|
Ismailzadeh A, Masrournia M, Es’haghi Z, Bozorgmehr MR. An environmentally friendly sample pre-treatment method based on magnetic ionic liquids for trace determination of nitrotoluene compounds in soil and water samples by gas chromatography–mass spectrometry using response surface methodology. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01131-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
6
|
Zarejousheghani M, Lorenz W, Vanninen P, Alizadeh T, Cämmerer M, Borsdorf H. Molecularly Imprinted Polymer Materials as Selective Recognition Sorbents for Explosives: A Review. Polymers (Basel) 2019; 11:polym11050888. [PMID: 31096617 PMCID: PMC6572358 DOI: 10.3390/polym11050888] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 11/29/2022] Open
Abstract
Explosives are of significant interest to homeland security departments and forensic investigations. Fast, sensitive and selective detection of these chemicals is of great concern for security purposes as well as for triage and decontamination in contaminated areas. To this end, selective sorbents with fast binding kinetics and high binding capacity, either in combination with a sensor transducer or a sampling/sample-preparation method, are required. Molecularly imprinted polymers (MIPs) show promise as cost-effective and rugged artificial selective sorbents, which have a wide variety of applications. This manuscript reviews the innovative strategies developed in 57 manuscripts (published from 2006 to 2019) to use MIP materials for explosives. To the best of our knowledge, there are currently no commercially available MIP-modified sensors or sample preparation methods for explosives in the market. We believe that this review provides information to give insight into the future prospects and potential commercialization of such materials. We warn the readers of the hazards of working with explosives.
Collapse
Affiliation(s)
- Mashaalah Zarejousheghani
- UFZ-Helmholtz Centre for Environmental Research, Department Monitoring and Exploration Technologies, Permoserstraße 15, D-04318 Leipzig, Germany.
| | - Wilhelm Lorenz
- Institute of Chemistry, Food Chemistry and Environmental Chemistry, Martin-Luther-University Halle-Wittenberg, D-06120 Halle, Germany.
| | - Paula Vanninen
- VERIFIN, Finnish Institute for Verification of The Chemical Weapons Convention, Department of Chemistry, University of Helsinki, FI-00014 Helsinki Finland.
| | - Taher Alizadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University College of Science, University of Tehran, 1417466191 Tehran, Iran.
| | - Malcolm Cämmerer
- UFZ-Helmholtz Centre for Environmental Research, Department Monitoring and Exploration Technologies, Permoserstraße 15, D-04318 Leipzig, Germany.
| | - Helko Borsdorf
- UFZ-Helmholtz Centre for Environmental Research, Department Monitoring and Exploration Technologies, Permoserstraße 15, D-04318 Leipzig, Germany.
| |
Collapse
|
7
|
Preparation and Evaluation of Oseltamivir Molecularly Imprinted Polymer Silica Gel as Liquid Chromatography Stationary Phase. Molecules 2018; 23:molecules23081881. [PMID: 30060497 PMCID: PMC6222414 DOI: 10.3390/molecules23081881] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/13/2018] [Accepted: 07/25/2018] [Indexed: 11/16/2022] Open
Abstract
To improve the chromatographic performance of an oseltamivir (OS) molecularly imprinted polymer (MIP), silica gel coated with an MIP layer for OS (OSMIP@silica gel) was prepared by the surface molecular imprinting technology on the supporter of porous silica gel microspheres. A nonimprinted polymer with the silica gel (NIP@silica gel) was also prepared for comparison. The obtained particles were characterized through FT–IR, scanning electron microscopy, specific surface area analysis, and porosity measurements. The results indicated that the polymer was successfully synthesized and revealed the structural differences between imprinted and nonimprinted polymers. The results of static adsorption experiments showed that adsorption quantity of the OSMIP@silica gel for OS was higher than that for NIP@silica gel, and the OSMIP@silica gel had two kinds of affinity sites for OS but the NIP@silica gel had one. The chromatographic performance of the OSMIP@silica gel column had significant improvement. The imprinting factor of the OSMIP@silica gel column for OS was 1.64. Furthermore, the OSMIP@silica gel column showed good affinity and selectivity for template OS and another neuraminidase inhibitor, peramivir, but not for quinocetone. These results indicated that the prepared OSMIP could be used to simulate the activity center of neuraminidase, and the OSMIP@silica gel column could be also employed in future studies to search for more active neuraminidase inhibitor analogues from traditional Chinese herbs.
Collapse
|
8
|
Bors D, Goodpaster J. Mapping smokeless powder residue on PVC pipe bomb fragments using total vaporization solid phase microextraction. Forensic Sci Int 2017; 276:71-76. [DOI: 10.1016/j.forsciint.2017.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 11/29/2022]
|
9
|
Yılmaz E, Garipcan B, Patra HK, Uzun L. Molecular Imprinting Applications in Forensic Science. SENSORS 2017; 17:s17040691. [PMID: 28350333 PMCID: PMC5419804 DOI: 10.3390/s17040691] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 01/04/2023]
Abstract
Producing molecular imprinting-based materials has received increasing attention due to recognition selectivity, stability, cast effectiveness, and ease of production in various forms for a wide range of applications. The molecular imprinting technique has a variety of applications in the areas of the food industry, environmental monitoring, and medicine for diverse purposes like sample pretreatment, sensing, and separation/purification. A versatile usage, stability and recognition capabilities also make them perfect candidates for use in forensic sciences. Forensic science is a demanding area and there is a growing interest in molecularly imprinted polymers (MIPs) in this field. In this review, recent molecular imprinting applications in the related areas of forensic sciences are discussed while considering the literature of last two decades. Not only direct forensic applications but also studies of possible forensic value were taken into account like illicit drugs, banned sport drugs, effective toxins and chemical warfare agents in a review of over 100 articles. The literature was classified according to targets, material shapes, production strategies, detection method, and instrumentation. We aimed to summarize the current applications of MIPs in forensic science and put forth a projection of their potential uses as promising alternatives for benchmark competitors.
Collapse
Affiliation(s)
- Erkut Yılmaz
- Department of Biotechnology and Molecular Biology, Aksaray University, 68100 Aksaray, Turkey.
| | - Bora Garipcan
- Institute of Biomedical Engineering, Bogazici University, 34684 Istanbul, Turkey.
| | - Hirak K Patra
- Department of Clinical and Experimental Medicine, Linkoping University, 58225 Linköping, Sweden.
| | - Lokman Uzun
- Department of Chemistry, Hacettepe University, 06381 Ankara, Turkey.
| |
Collapse
|
10
|
Wang J, Meng Z, Xue M, Qiu L, Dong X, Xu Z, He X, Liu X, Li J. Simultaneous selective extraction of nitramine explosives using molecularly imprinted polymer hollow spheres from post blast samples. NEW J CHEM 2017. [DOI: 10.1039/c6nj02910h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solvents modulate the adsorption selectivity and adsorption capacity of a molecularly imprinted polymer to target compounds.
Collapse
Affiliation(s)
- Jian Wang
- School of Chemical Engineering & Environment
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
- School of Petroleum and Environmental Engineering
| | - Zihui Meng
- School of Chemical Engineering & Environment
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Min Xue
- School of Chemical Engineering & Environment
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Lili Qiu
- School of Chemical Engineering & Environment
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Xiao Dong
- School of Chemical Engineering & Environment
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Zhibin Xu
- School of Chemical Engineering & Environment
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Xuan He
- Institute of Chemical Materials
- China Academy of Engineering Physics
- Mianyang 621900
- P. R. China
| | - Xueyong Liu
- Institute of Chemical Materials
- China Academy of Engineering Physics
- Mianyang 621900
- P. R. China
| | - Jinshan Li
- Institute of Chemical Materials
- China Academy of Engineering Physics
- Mianyang 621900
- P. R. China
| |
Collapse
|
11
|
Ion chromatography-mass spectrometry: A review of recent technologies and applications in forensic and environmental explosives analysis. Anal Chim Acta 2014; 806:27-54. [DOI: 10.1016/j.aca.2013.10.047] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 10/21/2013] [Accepted: 10/27/2013] [Indexed: 11/18/2022]
|
12
|
Liu L, Cao Y, Ma P, Qiu C, Xu W, Liu H, Huang W. Rational design and preparation of magnetic imprinted polymers for removal of indole by molecular simulation and improved atom transfer radical polymerization. RSC Adv 2014. [DOI: 10.1039/c3ra43875a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|