1
|
Simard M, Tremblay A, Morin S, Martin C, Julien P, Fradette J, Flamand N, Pouliot R. α-Linolenic acid and linoleic acid modulate the lipidome and the skin barrier of a tissue-engineered skin model. Acta Biomater 2022; 140:261-274. [PMID: 34808417 DOI: 10.1016/j.actbio.2021.11.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/18/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) play an important role in the establishment and the maintenance of the skin barrier function. However, the impact of their derived lipid mediators remains unclear. Skin substitutes were engineered according to the self-assembly method with a culture medium supplemented with 10 μM of both α-linolenic acid (ALA) and linoleic acid (LA). The supplementation with ALA and LA decreased testosterone absorption through a tissue-engineered reconstructed skin model, thus indicating an improved skin barrier function following supplementation. The exogenously provided fatty acids were incorporated into the phospholipid and triglyceride fractions of the skin substitutes. Indeed, the dual supplementation increased the levels of eicosapentaenoic acid (EPA) (15-fold), docosapentaenoic acid (DPA) (3-fold), and LA (1.5-fold) in the epidermal phospholipids while it increased the levels of ALA (>20-fold), DPA (3-fold) and LA (1.5-fold) in the epidermal triglycerides. The bioactive lipid mediator profile of the skin substitutes, including prostaglandins, hydroxy-fatty acids, N-acylethanolamines and monoacylglycerols, was next analyzed using liquid chromatography-tandem mass spectrometry. The lipid supplementation further modulated bioactive lipid mediator levels of the reconstructed skin substitutes, leading to a lipid mediator profile more representative of the one found in normal human skin. These findings show that an optimized supply of PUFAs via culture media is essential for the establishment of improved barrier function in vitro. STATEMENT OF SIGNIFICANCE: Supplementation of the culture medium with 10 μM of both α-linolenic acid (ALA) and linoleic acid (LA) improved the skin barrier function of a tissue-engineered skin model. The exogenously provided fatty acids were incorporated into the phospholipid and triglyceride fractions of the skin substitutes and further modulated bioactive lipid mediator levels, including prostaglandins, hydroxy-fatty acids, N-acylethanolamines and monoacylglycerols. These findings highlight the important role of ALA and LA in skin homeostasis and show that an optimized supply of polyunsaturated fatty acids via culture media is essential for the establishment of improved barrier function in vitro.
Collapse
Affiliation(s)
- Mélissa Simard
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, G1J 1Z4, Canada; Faculté de pharmacie de l'Université Laval, Québec, QC, G1J 1A4, Canada
| | - Andréa Tremblay
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, G1J 1Z4, Canada; Faculté de pharmacie de l'Université Laval, Québec, QC, G1J 1A4, Canada
| | - Sophie Morin
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, G1J 1Z4, Canada; Faculté de pharmacie de l'Université Laval, Québec, QC, G1J 1A4, Canada
| | - Cyril Martin
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, QC, G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, QC, Canada
| | - Pierre Julien
- Département de médecine, Faculté de médecine de l'Université Laval, Québec, QC, G1V 0A6, Canada; Axe Endocrinologie et Néphrologie, Centre de recherche du CHU de Québec, Université Laval, Québec, QC, G1J 1A4, Canada
| | - Julie Fradette
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, G1J 1Z4, Canada; Département de chirurgie, Faculté de médecine de l'Université Laval, Québec, QC, G1V 0A6, Canada
| | - Nicolas Flamand
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, QC, G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, QC, Canada
| | - Roxane Pouliot
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, G1J 1Z4, Canada; Faculté de pharmacie de l'Université Laval, Québec, QC, G1J 1A4, Canada.
| |
Collapse
|
2
|
Bouwstra JA, Helder RW, El Ghalbzouri A. Human skin equivalents: Impaired barrier function in relation to the lipid and protein properties of the stratum corneum. Adv Drug Deliv Rev 2021; 175:113802. [PMID: 34015420 DOI: 10.1016/j.addr.2021.05.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 12/15/2022]
Abstract
To advance drug development representative reliable skin models are indispensable. Animal skin as test model for human skin delivery is restricted as their properties greatly differ from human skin. In vitro 3D-human skin equivalents (HSEs) are valuable tools as they recapitulate important aspects of the human skin. However, HSEs still lack the full barrier functionality as observed in native human skin, resulting in suboptimal screening outcome. In this review we provide an overview of established in-house and commercially available HSEs and discuss in more detail to what extent their skin barrier biology is mimicked in vitro focusing on the lipid properties and cornified envelope. Further, we will illustrate how underlying factors, such as culture medium improvements and environmental factors affect the barrier lipids. Lastly, potential improvements in skin barrier function will be proposed aiming at a new generation of HSEs that may replace animal skin delivery studies fully.
Collapse
|
3
|
Omar MM, Laprise-Pelletier M, Chevallier P, Tuduri L, Fortin MA. High-Sensitivity Permeation Analysis of Ultrasmall Nanoparticles Across the Skin by Positron Emission Tomography. Bioconjug Chem 2021; 32:729-745. [PMID: 33689293 DOI: 10.1021/acs.bioconjchem.1c00017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ultrasmall nanoparticles (US-NPs; <20 nm in hydrodynamic size) are now included in a variety of pharmacological and cosmetic products, and new technologies are needed to detect at high sensitivity the passage of small doses of these products across biological barriers such as the skin. In this work, a diffusion cell adapted to positron emission tomography (PET), a highly sensitive imaging technology, was developed to measure the passage of gold NPs (AuNPs) in skin samples in continuous mode. US-AuNPs (3.2 nm diam.; TEM) were functionalized with deferoxamine (DFO) and radiolabeled with 89Zr(IV) (half-life: 3.3 days, matching the timeline of diffusion tests). The physicochemical properties of the functionalized US-AuNPs (US-AuNPs-PEG-DFO) were characterized by FTIR (DFO grafting; hydroxamate peaks: 1629.0 cm-1, 1569.0 cm-1), XPS (presence of the O═C-N C 1s peak of DFO at 287.49 eV), and TGA (organic mass fraction). The passage of US-AuNPs-PEG-DFO-89Zr(IV) in skin samples was measured by PET, and the diffusion parameters were extracted thereby. The signals of radioactive US-AuNPs-PEG-DFO-89Zr(IV) leaving the donor compartment, passing through the skin, and entering the acceptor compartment were detected in continuous at concentrations as low as 2.2 nM of Au. The high-sensitivity acquisitions performed in continuous allowed for the first time to extract the lag time to the start of permeation, the lag time to start of the steady state, the diffusion coefficients, and the influx data for AuNPs permeating into the skin. PET could represent a highly valuable tool for the development of nanoparticle-containing topical formulations of drugs and cosmetics.
Collapse
Affiliation(s)
- Mahmoud M Omar
- Département de génie des mines, de la métallurgie et des matériaux, Centre de recherche sur les matériaux avancés (CERMA), Université Laval, Québec G1V 0A6, Canada.,Axe Médecine régénératrice, Centre Hospitalier Universitaire (CHU) de Québec, 2705, boul. Laurier (T1-61a), Québec G1V 4G2, Canada
| | - Myriam Laprise-Pelletier
- Axe Médecine régénératrice, Centre Hospitalier Universitaire (CHU) de Québec, 2705, boul. Laurier (T1-61a), Québec G1V 4G2, Canada
| | - Pascale Chevallier
- Axe Médecine régénératrice, Centre Hospitalier Universitaire (CHU) de Québec, 2705, boul. Laurier (T1-61a), Québec G1V 4G2, Canada
| | - Ludovic Tuduri
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5805, Environnements et Paléoenvironnements Océaniques et Continentaux (EPOC), Équipe Physico et Toxico Chimie de l'environnement, Université de Bordeaux, Talence 33405, France
| | - Marc-André Fortin
- Département de génie des mines, de la métallurgie et des matériaux, Centre de recherche sur les matériaux avancés (CERMA), Université Laval, Québec G1V 0A6, Canada.,Axe Médecine régénératrice, Centre Hospitalier Universitaire (CHU) de Québec, 2705, boul. Laurier (T1-61a), Québec G1V 4G2, Canada
| |
Collapse
|
4
|
Maphanao P, Thanan R, Loilome W, Chio-Srichan S, Wongwattanakul M, Sakonsinsiri C. Synchrotron FTIR microspectroscopy revealed apoptosis-induced biomolecular changes of cholangiocarcinoma cells treated with ursolic acid. Biochim Biophys Acta Gen Subj 2020; 1864:129708. [PMID: 32810561 DOI: 10.1016/j.bbagen.2020.129708] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/23/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Ursolic acid (UA) is a natural triterpenoid which possesses anti-cancer activity. However, little is known regarding the activity and molecular mechanism of UA in cholangiocarcinoma (CCA). Thus, we investigated the effects of UA on growth inhibition and apoptosis induction through biomolecular changes in KKU-213 and KKU-055 CCA cell lines. METHODS The anti-proliferative effect of UA against CCA cells was evaluated using SRB assay. Changes in biomolecules were assessed by SR-FTIR microspectroscopy combined with PCA and conventional methods (i.e., Annexin V-FITC/PI staining for lipid alteration and apoptosis induction; Western blot analysis and caspase-3/7 activity assay for apoptotic protein detection). RESULTS UA suppressed the proliferation of CCA cells in a dose- and time-dependent manner. SR-FTIR data revealed a significant alteration in lipids attributable to changes in apoptotic cell membranes, confirmed by Annexin V-FITC/PI staining. SR-FTIR data showed that UA promoted changes in the protein secondary structure. Elevated expression of Bax and decreased expression of Bcl-2 and survivin/BIRC5 along with augmented caspase-3/7 activity supported alterations in apoptosis-related proteins. CONCLUSIONS SR-FTIR microspectroscopy was successfully used as a label-free technique to monitor apoptosis-induced biomolecular changes in UA-treated CCA cells. UA exerted the cytotoxic and apoptotic activities in CCA cells through alterations in membrane lipids and apoptotic proteins. UA could be a potential anti-CCA candidate and a chemical starting point for the discovery of novel anti-cancer agents. SIGNIFICANCE Our present study showed the first evidence that UA exhibited the anti-proliferative and pro-apoptotic activities toward CCA cells through changes in biomolecules, notably lipids and proteins.
Collapse
Affiliation(s)
- Pornpattra Maphanao
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Raynoo Thanan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Watcharin Loilome
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sirinart Chio-Srichan
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, 30000, Thailand
| | - Molin Wongwattanakul
- Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; Center for Innovation and Standard for Medical Technology and Physical Therapy, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chadamas Sakonsinsiri
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
5
|
Characterisation of bovine and buffalo anhydrous milk fat fractions along with infant formulas fat: Application of differential scanning calorimetry, Fourier transform infrared spectroscopy, and colour attributes. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Pandey P, Satija S, Wadhwa R, Mehta M, Purohit D, Gupta G, Prasher P, Chellappan DK, Awasthi R, Dureja H, Dua K. Emerging trends in nanomedicine for topical delivery in skin disorders: Current and translational approaches. Dermatol Ther 2020; 33:e13292. [DOI: 10.1111/dth.13292] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/12/2020] [Accepted: 02/26/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Parijat Pandey
- Shri Baba Mastnath Institute of Pharmaceutical Sciences and Research Baba Mastnath University Rohtak Haryana India
| | - Saurabh Satija
- School of Pharmaceutical Sciences Lovely Professional University Phagwara Punjab India
| | - Ridhima Wadhwa
- Faculty of Life Science and Biotechnology South Asian University Akbar Bhawan, Chanakyapuri New Delhi India
- Discipline of Pharmacy, Graduate School of Health University of Technology Sydney Sydney Australia
| | - Meenu Mehta
- School of Pharmaceutical Sciences Lovely Professional University Phagwara Punjab India
- Discipline of Pharmacy, Graduate School of Health University of Technology Sydney Sydney Australia
- Centre for Inflammation Centenary Institute Sydney New South Wales Australia
| | - Deepika Purohit
- Department of Pharmaceutical Sciences Indira Gandhi University Rewari Haryana India
| | - Gaurav Gupta
- School of Pharmaceutical Sciences Jaipur National University Jaipur Rajasthan India
| | - Parteek Prasher
- Department of Chemistry University of Petroleum and Energy Studies Dehradun India
| | - Dinesh K. Chellappan
- Departmental Sciences, School of Pharmacy International Medical University Kuala Lumpur Malaysia
| | - Rajendra Awasthi
- Amity Institute of Pharmacy Amity University Uttar Pradesh Noida Uttar Pradesh India
| | - Harish Dureja
- Department of Pharmaceutical Sciences Maharshi Dayanand University Rohtak Haryana India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health University of Technology Sydney Sydney Australia
- Centre for Inflammation Centenary Institute Sydney New South Wales Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) and School of Biomedical Sciences and Pharmacy, The University of Newcastle (UoN) Callaghan New South Wales Australia
| |
Collapse
|
7
|
Liu X, Xu L, Liu X, Wang Y, Zhao Y, Kang Q, Liu J, Lan H, Yu L, Wu Q. Combination of essential oil from Zanthoxylum bungeanum Maxim. and a microemulsion system: Permeation enhancement effect on drugs with different lipophilicity and its mechanism. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Timilsena YP, Vongsvivut J, Tobin MJ, Adhikari R, Barrow C, Adhikari B. Investigation of oil distribution in spray-dried chia seed oil microcapsules using synchrotron-FTIR microspectroscopy. Food Chem 2019; 275:457-466. [DOI: 10.1016/j.foodchem.2018.09.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 08/15/2018] [Accepted: 09/07/2018] [Indexed: 12/21/2022]
|
9
|
Olsztyńska-Janus S, Pietruszka A, Kiełbowicz Z, Czarnecki MA. ATR-IR study of skin components: Lipids, proteins and water. Part I: Temperature effect. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 188:37-49. [PMID: 28689077 DOI: 10.1016/j.saa.2017.07.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/30/2017] [Accepted: 07/01/2017] [Indexed: 06/07/2023]
Abstract
In this work we report the studies of the effect of temperature on skin components, such as lipids, proteins and water. Modifications of lipids structure induced by increasing temperature (from 20 to 90°C) have been studied using ATR-IR (Attenuated Total Reflectance Infrared) spectroscopy, which is a powerful tool for characterization of the molecular structure and properties of tissues, such as skin. Due to the small depth of penetration (0.6-5.6μm), ATR-IR spectroscopy probes only the outermost layer of the skin, i.e. the stratum corneum (SC). The assignment of main spectral features of skin components allows for the determination of phase transitions from the temperature dependencies of band intensities [e.g. νas(CH2) and νs(CH2)]. The phase transitions were determined by using two methods: the first one was based on the first derivative of the Boltzmann function and the second one employed tangent lines of sigmoidal, aforementioned dependencies. The phase transitions in lipids were correlated with modifications of the structure of water and proteins.
Collapse
Affiliation(s)
- S Olsztyńska-Janus
- Department of Biomedical Engineering, Wrocław University of Science and Technology, pl. Grunwaldzki 13, 50-370 Wrocław, Poland.
| | - A Pietruszka
- Department of Biomedical Engineering, Wrocław University of Science and Technology, pl. Grunwaldzki 13, 50-370 Wrocław, Poland
| | - Z Kiełbowicz
- Department of Surgery the Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 51, 50-366 Wrocław, Poland
| | - M A Czarnecki
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
10
|
Schönhals A, Tholl H, Glasmacher M, Kröger-Lui N, Pucci A, Petrich W. Optical properties of porcine dermis in the mid-infrared absorption band of glucose. Analyst 2017; 142:1235-1243. [DOI: 10.1039/c6an01757f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mid-infrared absorption and scattering properties of porcine dermis are quantified using quantum cascade laser-based goniometry.
Collapse
Affiliation(s)
- Arthur Schönhals
- Kirchhoff Institute for Physics
- Heidelberg University
- 69120 Heidelberg
- Germany
| | - Hans Tholl
- Diehl BGT Defence GmbH & Co. KG
- 88662 Überlingen
- Germany
| | | | - Niels Kröger-Lui
- Kirchhoff Institute for Physics
- Heidelberg University
- 69120 Heidelberg
- Germany
| | - Annemarie Pucci
- Kirchhoff Institute for Physics
- Heidelberg University
- 69120 Heidelberg
- Germany
| | - Wolfgang Petrich
- Kirchhoff Institute for Physics
- Heidelberg University
- 69120 Heidelberg
- Germany
| |
Collapse
|
11
|
Planz V, Lehr CM, Windbergs M. In vitro models for evaluating safety and efficacy of novel technologies for skin drug delivery. J Control Release 2016; 242:89-104. [PMID: 27612408 DOI: 10.1016/j.jconrel.2016.09.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/22/2016] [Accepted: 09/05/2016] [Indexed: 12/14/2022]
Abstract
For preclinical testing of novel therapeutics, predictive in vitro models of the human skin are required to assess efficacy, absorption and safety. Simple as well as more sophisticated three-dimensional organotypic models of the human skin emerged as versatile and powerful tools simulating healthy as well as diseased skin states. Besides addressing the demands of research and industry, such models serve as valid alternative to animal testing. Recently, the acceptance of several models by regulatory authorities corroborates their role as important building block for preclinical development. However, valid assessment of readout parameters derived from these models requires suitable analytical techniques. Standard analytical methods are mostly destructive and limited regarding in-depth investigation on molecular level. The combination of adequate in vitro models with modern non-invasive analytical modalities bears a great potential to address important skin drug delivery related questions. Topics of interest are for instance the assessment of repeated dosing effects and xenobiotic biotransformation, which cannot be analyzed by destructive techniques. This review provides a comprehensive overview of current in vitro skin models differing in functional complexity and mimicking healthy as well as diseased skin states. Further, benefits and limitations regarding analytical evaluation of efficacy, absorption and safety of novel drug carrier systems applied to such models are discussed along with a prospective view of anticipated future directions. In addition, emerging non-invasive imaging modalities are introduced and their significance and potential to advance current knowledge in the field of skin drug delivery is explored.
Collapse
Affiliation(s)
- Viktoria Planz
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Drug Delivery (DDEL), 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany; PharmBioTec GmbH, 66123 Saarbrücken, Germany
| | - Claus-Michael Lehr
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Drug Delivery (DDEL), 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany; PharmBioTec GmbH, 66123 Saarbrücken, Germany
| | - Maike Windbergs
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Drug Delivery (DDEL), 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany; PharmBioTec GmbH, 66123 Saarbrücken, Germany.
| |
Collapse
|
12
|
Yang C, Niedieker D, Grosserüschkamp F, Horn M, Tannapfel A, Kallenbach-Thieltges A, Gerwert K, Mosig A. Fully automated registration of vibrational microspectroscopic images in histologically stained tissue sections. BMC Bioinformatics 2015; 16:396. [PMID: 26607812 PMCID: PMC4659215 DOI: 10.1186/s12859-015-0804-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/29/2015] [Indexed: 01/01/2023] Open
Abstract
Background In recent years, hyperspectral microscopy techniques such as infrared or Raman microscopy have been applied successfully for diagnostic purposes. In many of the corresponding studies, it is common practice to measure one and the same sample under different types of microscopes. Any joint analysis of the two image modalities requires to overlay the images, so that identical positions in the sample are located at the same coordinate in both images. This step, commonly referred to as image registration, has typically been performed manually in the lack of established automated computational registration tools. Results We propose a corresponding registration algorithm that addresses this registration problem, and demonstrate the robustness of our approach in different constellations of microscopes. First, we deal with subregion registration of Fourier Transform Infrared (FTIR) microscopic images in whole-slide histopathological staining images. Second, we register FTIR imaged cores of tissue microarrays in their histopathologically stained counterparts, and finally perform registration of Coherent anti-Stokes Raman spectroscopic (CARS) images within histopathological staining images. Conclusions Our validation involves a large variety of samples obtained from colon, bladder, and lung tissue on three different types of microscopes, and demonstrates that our proposed method works fully automated and highly robust in different constellations of microscopes involving diverse types of tissue samples. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0804-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chen Yang
- Department of Biophysics, CAS-MPG Partner Institute and Key Laboratory for Computational Biology, 320 Yueyang Road, Shanghai, 200031, China.
| | - Daniel Niedieker
- Department of Biophysics, Ruhr-University Bochum, Universitätsstraße 150, Bochum, 44780, Germany.
| | - Frederik Grosserüschkamp
- Department of Biophysics, Ruhr-University Bochum, Universitätsstraße 150, Bochum, 44780, Germany.
| | - Melanie Horn
- Department of Biophysics, Ruhr-University Bochum, Universitätsstraße 150, Bochum, 44780, Germany.
| | - Andrea Tannapfel
- Institute of Pathology, Ruhr-University Bochum, Bochum, Germany, Bürkle-de-la-Camp-Platz 1, Bochum, 44789, Germany.
| | | | - Klaus Gerwert
- Department of Biophysics, CAS-MPG Partner Institute and Key Laboratory for Computational Biology, 320 Yueyang Road, Shanghai, 200031, China. .,Department of Biophysics, Ruhr-University Bochum, Universitätsstraße 150, Bochum, 44780, Germany.
| | - Axel Mosig
- Department of Biophysics, Ruhr-University Bochum, Universitätsstraße 150, Bochum, 44780, Germany.
| |
Collapse
|
13
|
Leroy M, Labbé JF, Ouellet M, Jean J, Lefèvre T, Laroche G, Auger M, Pouliot R. A comparative study between human skin substitutes and normal human skin using Raman microspectroscopy. Acta Biomater 2014; 10:2703-11. [PMID: 24530562 DOI: 10.1016/j.actbio.2014.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 01/27/2014] [Accepted: 02/03/2014] [Indexed: 11/17/2022]
Abstract
Research in the field of bioengineered skin substitutes is motivated by the need to find new dressings for people affected by skin injuries (burns, diabetic ulcers), and to develop adequate skin models to test new formulations developed in vitro. Thanks to advances in tissue engineering, it is now possible to produce human skin substitutes without any exogenous material, using the self-assembly method developed by the Laboratoire d'Organogénèse Expérimentale. These human skin substitutes consist of a dermis and a stratified epidermis (stratum corneum and living epidermis). Raman microspectroscopy has been used to characterize and compare the molecular organization of skin substitutes with normal human skin. Our results confirm that the stratum corneum is a layer rich in lipids which are well ordered (trans conformers) in both substitutes and normal human skin. The amount of lipids decreases and more gauche conformers appear in the living epidermis in both cases. However, the results also show that there are fewer lipids in the substitutes and that the lipids are more organized in the normal human skin. Concerning the secondary structure of proteins and protein content, the data show that they are similar in the substitutes and in the normal human skin. In fact, the epidermis is rich in α-keratin, whereas the dermis contains mainly type I collagen.
Collapse
Affiliation(s)
- Marie Leroy
- Laboratoire d'Ingénierie de Surface (LIS), Département de Génie des Mines, de la Métallurgie et des Matériaux, Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, 1065 avenue de la médecine, Québec, QC G1V 0A6, Canada; Centre de Recherche du CHU de Québec, Hôpital St-François d'Assise, 10 rue de l'Espinay, Québec, QC G1L 3L5, Canada; Centre LOEX de l'Université Laval, Génie Tissulaire et Régénération: LOEX-Centre de Recherche du CHU de Québec, Hôpital de l'Enfant Jesus, 1401, 18(e) rue, Québec, QC G1J 1Z4, Canada; Département de Chimie, Regroupement québécois sur la fonction, la structure et l'ingénierie des protéines (PROTEO), CERMA, Université Laval, 1045 avenue de la médecine, Québec, QC G1V 0A6, Canada
| | - Jean-François Labbé
- Département de Chimie, Regroupement québécois sur la fonction, la structure et l'ingénierie des protéines (PROTEO), CERMA, Université Laval, 1045 avenue de la médecine, Québec, QC G1V 0A6, Canada
| | - Marise Ouellet
- Département de Chimie, Regroupement québécois sur la fonction, la structure et l'ingénierie des protéines (PROTEO), CERMA, Université Laval, 1045 avenue de la médecine, Québec, QC G1V 0A6, Canada
| | - Jessica Jean
- Centre LOEX de l'Université Laval, Génie Tissulaire et Régénération: LOEX-Centre de Recherche du CHU de Québec, Hôpital de l'Enfant Jesus, 1401, 18(e) rue, Québec, QC G1J 1Z4, Canada
| | - Thierry Lefèvre
- Département de Chimie, Regroupement québécois sur la fonction, la structure et l'ingénierie des protéines (PROTEO), CERMA, Université Laval, 1045 avenue de la médecine, Québec, QC G1V 0A6, Canada
| | - Gaétan Laroche
- Laboratoire d'Ingénierie de Surface (LIS), Département de Génie des Mines, de la Métallurgie et des Matériaux, Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, 1065 avenue de la médecine, Québec, QC G1V 0A6, Canada; Centre de Recherche du CHU de Québec, Hôpital St-François d'Assise, 10 rue de l'Espinay, Québec, QC G1L 3L5, Canada
| | - Michèle Auger
- Département de Chimie, Regroupement québécois sur la fonction, la structure et l'ingénierie des protéines (PROTEO), CERMA, Université Laval, 1045 avenue de la médecine, Québec, QC G1V 0A6, Canada.
| | - Roxane Pouliot
- Centre LOEX de l'Université Laval, Génie Tissulaire et Régénération: LOEX-Centre de Recherche du CHU de Québec, Hôpital de l'Enfant Jesus, 1401, 18(e) rue, Québec, QC G1J 1Z4, Canada.
| |
Collapse
|