1
|
Feizi N, Hashemi-Nasab FS, Golpelichi F, Saburouh N, Parastar H. Recent trends in application of chemometric methods for GC-MS and GC×GC-MS-based metabolomic studies. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116239] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
2
|
Boxler MI, Schneider TD, Kraemer T, Steuer AE. Analytical considerations for (un)-targeted metabolomic studies with special focus on forensic applications. Drug Test Anal 2018; 11:678-696. [PMID: 30408838 DOI: 10.1002/dta.2540] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 12/13/2022]
Abstract
Over the past few years, the interest in metabolomics has increased in various fields including forensic toxicology. Forensic analysis typically requires a high degree of accuracy, which is often a problem in metabolomics applications. We aimed for a systematic evaluation of different analytical considerations of a metabolomics workflow allowing a targeted approach within an untargeted setup. Samples with 69 metabolites from different chemical classes were qualitatively and quantitatively analyzed on a high resolution quadrupole time of flight mass spectrometer coupled to liquid chromatography (UHPLC-QTOF). Three issues were addressed: (a) Two different approaches on "blind matrix" a simulated body fluid (SBF) and plasma-filtrate, were tested for calibration samples; (b) comparison of two different HPLC columns, reverse-phase (RP) and hydrophilic interaction chromatography (HILIC); and (c) comparison of three different acquisition modes (TOF-MS, information dependent data acquisition (IDA), and sequential window acquisition of all theoretical fragment-ion spectra (SWATH). Samples were measured repeatedly for method comparison based on sensitivity, accuracy, precision, and detection robustness. The blind matrices showed similar accuracy for most analytes, while SBF provided an easier preparation with satisfying results. To cover a wide part of the human metabolome, a combination of RP and HILIC showed the best results. The different scan modes performed equally regarding metabolite quantification while TOF-MS was more sensitive but lacked MS/MS spectra generation. IDA and SWATH files were aligned to various databases where IDA showed good MS/MS spectra matches. SWATH seemed to be beneficial in detection rate but was incompatible with many important software tools in metabolomics.
Collapse
Affiliation(s)
- Martina I Boxler
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Switzerland
| | - Tom D Schneider
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Switzerland
| | - Thomas Kraemer
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Switzerland
| | - Andrea E Steuer
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Switzerland
| |
Collapse
|
3
|
Kiss A, Bergé A, Domenjoud B, Gonzalez-Ospina A, Vulliet E. Chemometric and high-resolution mass spectrometry tools for the characterization and comparison of raw and treated wastewater samples of a pilot plant on the SIPIBEL site. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:9230-9242. [PMID: 29170926 DOI: 10.1007/s11356-017-0748-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 11/14/2017] [Indexed: 06/07/2023]
Abstract
Due to its key role in the contamination of natural resources, the assessment of raw and treated wastewater effluents is a current major concern and urges comprehensive analytical methods capable of selectively capturing the chemodiversity of these samples. In this context, the overall objective of this work can be summarized as (i) the assessment of the performance of secondary and tertiary (advanced oxidation) wastewater treatments through multivariate analysis followed by (ii) the comprehensive characterization of wastewater samples based on their spectral fingerprints and a combination of suspect and non-target screening approaches. Several compounds, belonging to different sources of contamination were annotated and/or partially identified: pharmaceuticals, metabolites and transformation compounds, human activity markers, surfactants, and polyethoxy compounds. These results highlight the contribution of filtering and screening tools such as monoisotopic exact mass, mass defect, MS/MS data-dependent acquisitions, isotopic pattern and retention time to the selection, and the identification of environmental contaminants and their metabolites/degradation products. This paper completes the target study conducted in the SIPIBEL site and offers an alternative for the assessment of treatment processes by broadening the spectrum to a larger number of compounds and the correlations between them.
Collapse
Affiliation(s)
- Agneta Kiss
- University Lyon, CNRS, Université Lyon 1, Ens de Lyon, Institut des Sciences Analytiques, UMR 5280, 5, rue de la Doua, 69100, Villeurbanne, France
| | - Alexandre Bergé
- University Lyon, CNRS, Université Lyon 1, Ens de Lyon, Institut des Sciences Analytiques, UMR 5280, 5, rue de la Doua, 69100, Villeurbanne, France
| | - Bruno Domenjoud
- Degremont, Direction Technique Innovation, 183 avenue du 18 juin 1940, 92500, Rueil-Malmaison, France
| | - Adriana Gonzalez-Ospina
- Degremont, Direction Technique Innovation, 183 avenue du 18 juin 1940, 92500, Rueil-Malmaison, France
| | - Emmanuelle Vulliet
- University Lyon, CNRS, Université Lyon 1, Ens de Lyon, Institut des Sciences Analytiques, UMR 5280, 5, rue de la Doua, 69100, Villeurbanne, France.
| |
Collapse
|
4
|
Yi L, Dong N, Yun Y, Deng B, Ren D, Liu S, Liang Y. Chemometric methods in data processing of mass spectrometry-based metabolomics: A review. Anal Chim Acta 2016; 914:17-34. [PMID: 26965324 DOI: 10.1016/j.aca.2016.02.001] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 01/03/2023]
Abstract
This review focuses on recent and potential advances in chemometric methods in relation to data processing in metabolomics, especially for data generated from mass spectrometric techniques. Metabolomics is gradually being regarded a valuable and promising biotechnology rather than an ambitious advancement. Herein, we outline significant developments in metabolomics, especially in the combination with modern chemical analysis techniques, and dedicated statistical, and chemometric data analytical strategies. Advanced skills in the preprocessing of raw data, identification of metabolites, variable selection, and modeling are illustrated. We believe that insights from these developments will help narrow the gap between the original dataset and current biological knowledge. We also discuss the limitations and perspectives of extracting information from high-throughput datasets.
Collapse
Affiliation(s)
- Lunzhao Yi
- Yunnan Food Safety Research Institute, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Naiping Dong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Yonghuan Yun
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Baichuan Deng
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Dabing Ren
- Yunnan Food Safety Research Institute, Kunming University of Science and Technology, Kunming, 650500, China
| | - Shao Liu
- Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yizeng Liang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| |
Collapse
|
5
|
LV MY, SUN JB, WANG M, FAN HY, ZHANG ZJ, XU FG. Comparative analysis of volatile oils in the stems and roots of Ephedra sinica via GC-MS-based plant metabolomics. Chin J Nat Med 2016; 14:133-140. [DOI: 10.1016/s1875-5364(16)60006-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Indexed: 01/29/2023]
|
6
|
Zhang T, Watson DG. A short review of applications of liquid chromatography mass spectrometry based metabolomics techniques to the analysis of human urine. Analyst 2015; 140:2907-15. [DOI: 10.1039/c4an02294g] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mass spectrometry based metabolomics profiling.
Collapse
Affiliation(s)
- Tong Zhang
- Strathclyde Institute of Pharmacy and Biomedical Sciences
- University of Strathclyde
- Glasgow
- UK
| | - David G. Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences
- University of Strathclyde
- Glasgow
- UK
| |
Collapse
|
7
|
Thevis M, Kuuranne T, Geyer H, Schänzer W. Annual banned-substance review: analytical approaches in human sports drug testing. Drug Test Anal 2014; 7:1-20. [DOI: 10.1002/dta.1769] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 12/01/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Mario Thevis
- Center for Preventive Doping Research - Institute of Biochemistry; German Sport University Cologne; Am Sportpark Müngersdorf 6 50933 Cologne Germany
- European Monitoring Center for Emerging Doping Agents; Cologne Germany
| | - Tiia Kuuranne
- Doping Control Laboratory; United Medix Laboratories; Höyläämötie 14 00380 Helsinki Finland
| | - Hans Geyer
- Center for Preventive Doping Research - Institute of Biochemistry; German Sport University Cologne; Am Sportpark Müngersdorf 6 50933 Cologne Germany
| | - Wilhelm Schänzer
- Center for Preventive Doping Research - Institute of Biochemistry; German Sport University Cologne; Am Sportpark Müngersdorf 6 50933 Cologne Germany
| |
Collapse
|