1
|
Ethane-bridge periodic mesoporous organosilica materials as a novel fiber coating in headspace solid-phase microextraction of phthalate esters from saliva and PET container samples. Anal Bioanal Chem 2022; 414:2285-2296. [PMID: 34985710 DOI: 10.1007/s00216-021-03868-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/12/2021] [Accepted: 12/23/2021] [Indexed: 12/31/2022]
|
2
|
Mollahosseini A, Rastegari M, Panahi-Dehghan M. Electrospun Polyacrylonitrile/Clinoptilolite Coating for SPME of PAHs from Water Samples. J Chromatogr Sci 2021; 60:401-407. [PMID: 34159366 DOI: 10.1093/chromsci/bmab082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 11/12/2022]
Abstract
Electrospun polyacrylonitrile/clinoptilolite (PAN/CP) nanofibers were used to extract polycyclic aromatic hydrocarbons (PAHs) (acenaphthene, acenaphthylene, naphthalene, and phenanthrene) from water samples by solid-phase microextraction (SPME). The target PAHs was detected and quantified by gas chromatography equipped with a flame ionization detector. The PAN/CP fibrous coating with uniform morphology and without beads was electrospun after optimizing the electrospinning parameters by the Taguchi method. Thermogravimetric analysis of PAN/CP nanofibers indicated that the nanofibers are thermally stable up to 357°C. The effective parameters that affect the extraction by SPME were optimized using the response surface methodology based on the central composite design. The limits of detection and limits of quantification by the proposed method were 0.10-0.32 and 0.45-1.12 ng mL-1, respectively. The relative standard deviations were below 12%. The method was assessed for extracting PAHs from real samples including agricultural water, rainwater and spring water. The obtained relative recoveries were higher than 86%.
Collapse
Affiliation(s)
- Afsaneh Mollahosseini
- Research Laboratory of Spectroscopy & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, P.O. Box 16846/13114, Tehran, Iran
| | - Mohammad Rastegari
- Research Laboratory of Spectroscopy & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, P.O. Box 16846/13114, Tehran, Iran.,Environmental Research Laboratory, School of Civil Engineering, Iran University of Science and Technology, P.O. Box 16846/13114, Tehran, Iran
| | - Mohadeseh Panahi-Dehghan
- Research Laboratory of Spectroscopy & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, P.O. Box 16846/13114, Tehran, Iran
| |
Collapse
|
3
|
Application trends of nanofibers in analytical chemistry. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115992
expr 834212330 + 887677890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
4
|
|
5
|
Zali S, Es-haghi A, Shamsipur M, Jalali F. Electrospun nanofibers as a new solid phase microextraction coating for determination of volatile organic impurities in biological products. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1153:122279. [DOI: 10.1016/j.jchromb.2020.122279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 01/11/2023]
|
6
|
Háková M, Havlíková LC, Švec F, Solich P, Šatínský D. Nanofibers as advanced sorbents for on-line solid phase extraction in liquid chromatography: A tutorial. Anal Chim Acta 2020; 1121:83-96. [PMID: 32493593 DOI: 10.1016/j.aca.2020.04.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 10/24/2022]
Abstract
Polymers in nanofiber format promise a great potential as sorbents for extraction techniques. This tutorial provides an overview of direct coupling of extraction techniques based on nanofibers to liquid chromatography. Arrangements of the fibers in conventional extraction cartridges are demonstrated. Selection of suitable nanomaterials according to their surface density, wettability, and mechanical stability is proposed and personal experience of the authors commented. Optimization of on-line extraction procedure, practical aspects, technical problems, pitfalls, pros, and cons of using nanofibers for extraction in high-pressure chromatography systems are also discussed and several examples presented. The following text comprehensively summarizes numerous reports that dealt with the topic. Future perspectives of advanced nanofiber materials and approaches that concern polymer fibers modifications are also included.
Collapse
Affiliation(s)
- Martina Háková
- Charles University, Faculty of Pharmacy, The Department of Analytical Chemistry, Ak. Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Lucie Chocholoušová Havlíková
- Charles University, Faculty of Pharmacy, The Department of Analytical Chemistry, Ak. Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - František Švec
- Charles University, Faculty of Pharmacy, The Department of Analytical Chemistry, Ak. Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Petr Solich
- Charles University, Faculty of Pharmacy, The Department of Analytical Chemistry, Ak. Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Dalibor Šatínský
- Charles University, Faculty of Pharmacy, The Department of Analytical Chemistry, Ak. Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
7
|
Yadav V, Rajput A, Sharma PP, Jha PK, Kulshrestha V. Polyetherimide based anion exchange membranes for alkaline fuel cell: Better ion transport properties and stability. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124348] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Hussain D, Raza Naqvi ST, Ashiq MN, Najam-ul-Haq M. Analytical sample preparation by electrospun solid phase microextraction sorbents. Talanta 2020; 208:120413. [DOI: 10.1016/j.talanta.2019.120413] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022]
|
9
|
Recent Applications and Newly Developed Strategies of Solid-Phase Microextraction in Contaminant Analysis: Through the Environment to Humans. SEPARATIONS 2019. [DOI: 10.3390/separations6040054] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The present review aims to describe the recent and most impactful applications in pollutant analysis using solid-phase microextraction (SPME) technology in environmental, food, and bio-clinical analysis. The covered papers were published in the last 5 years (2014–2019) thus providing the reader with information about the current state-of-the-art and the future potential directions of the research in pollutant monitoring using SPME. To this end, we revised the studies focused on the investigation of persistent organic pollutants (POPs), pesticides, and emerging pollutants (EPs) including personal care products (PPCPs), in different environmental, food, and bio-clinical matrices. We especially emphasized the role that SPME is having in contaminant surveys following the path that goes from the environment to humans passing through the food web. Besides, this review covers the last technological developments encompassing the use of novel extraction coatings (e.g., metal-organic frameworks, covalent organic frameworks, PDMS-overcoated fiber), geometries (e.g., Arrow-SPME, multiple monolithic fiber-SPME), approaches (e.g., vacuum and cold fiber SPME), and on-site devices. The applications of SPME hyphenated with ambient mass spectrometry have also been described.
Collapse
|
10
|
Aijaz MO, Karim MR, Alharbi HF, Alharthi NH. Novel optimised highly aligned electrospun PEI-PAN nanofibre mats with excellent wettability. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121665] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
11
|
Artifon W, Pasini SM, Valério A, González SYG, de Arruda Guelli Ulson de Souza SM, de Souza AAU. Harsh environment resistant - antibacterial zinc oxide/Polyetherimide electrospun composite scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109859. [DOI: 10.1016/j.msec.2019.109859] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/29/2019] [Accepted: 06/02/2019] [Indexed: 12/15/2022]
|
12
|
In vivo analysis of two new fungicides in mung bean sprouts by solid phase microextraction-gas chromatography-mass spectrometry. Food Chem 2019; 275:688-695. [DOI: 10.1016/j.foodchem.2018.09.148] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/15/2018] [Accepted: 09/24/2018] [Indexed: 12/20/2022]
|
13
|
Electrospun nanofiber polymers as extraction phases in analytical chemistry – The advances of the last decade. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.10.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
14
|
In-situ decorated silver nanoparticles on electrospun poly (vinyl alcohol)/chitosan nanofibers as a plasmonic sensor for azathioprine determination. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.09.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
15
|
Hou X, Wang L, Guo Y. Recent Developments in Solid-phase Microextraction Coatings for Environmental and Biological Analysis. CHEM LETT 2017. [DOI: 10.1246/cl.170366] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xiudan Hou
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Licheng Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Yong Guo
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
16
|
Piri-Moghadam H, Alam MN, Pawliszyn J. Review of geometries and coating materials in solid phase microextraction: Opportunities, limitations, and future perspectives. Anal Chim Acta 2017; 984:42-65. [PMID: 28843569 DOI: 10.1016/j.aca.2017.05.035] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/23/2017] [Accepted: 05/25/2017] [Indexed: 12/18/2022]
Abstract
The development of new support and geometries of solid phase microextraction (SPME), including metal fiber assemblies, coated-tip, and thin film microextraction (TFME) (i.e. self-supported, fabric and blade supported), as well as their effects on diffusion and extraction rate of analytes were discussed in the current review. Application of main techniques widely used for preparation of a variety of coating materials of SPME, including sol-gel technique, electrochemical and electrospinning methods as well as the available commercial coatings, were presented. Advantages and limitations of each technique from several aspects, such as range of application, biocompatibility, availability in different geometrical configurations, method of preparation, incorporation of various materials to tune the coating properties, and thermal and physical stability, were also investigated. Future perspectives of each technique to improve the efficiency and stability of the coatings were also summarized. Some interesting materials including ionic liquids (ILs), metal organic frameworks (MOFs) and particle loaded coatings were briefly presented.
Collapse
Affiliation(s)
- Hamed Piri-Moghadam
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Md Nazmul Alam
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
17
|
Reyes-Gallardo EM, Lucena R, Cárdenas S. Electrospun nanofibers as sorptive phases in microextraction. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.04.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Electrospun Polystyrene Nanofiber as an Adsorbent for Solid-Phase Extraction of Disulfine Blue from Aqueous Samples. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2015. [DOI: 10.1007/s13369-015-1968-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
A novel method for the determination of three volatile organic compounds in exhaled breath by solid-phase microextraction–ion mobility spectrometry. Anal Bioanal Chem 2015; 408:839-47. [DOI: 10.1007/s00216-015-9170-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 10/26/2015] [Accepted: 11/03/2015] [Indexed: 01/29/2023]
|
20
|
Huang J, Deng H, Song D, Xu H. Electrospun polystyrene/graphene nanofiber film as a novel adsorbent of thin film microextraction for extraction of aldehydes in human exhaled breath condensates. Anal Chim Acta 2015; 878:102-8. [DOI: 10.1016/j.aca.2015.03.053] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/29/2015] [Accepted: 03/31/2015] [Indexed: 10/23/2022]
|
21
|
Sol–gel/nanoclay composite as a solid-phase microextraction fiber coating for the determination of organophosphorus pesticides in water samples. Anal Bioanal Chem 2014; 407:1241-52. [DOI: 10.1007/s00216-014-8344-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 11/04/2014] [Accepted: 11/13/2014] [Indexed: 10/24/2022]
|