1
|
Gross JH. Application of atmospheric pressure field desorption for the analysis of anionic surfactants in commercial detergents. Anal Bioanal Chem 2023; 415:6421-6430. [PMID: 37644322 PMCID: PMC10567867 DOI: 10.1007/s00216-023-04917-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/10/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Recent work has shown that field desorption (FD) and field ionization (FI) using activated field emitters may be performed at atmospheric pressure, too. While some limitations apply to atmospheric pressure field desorption (APFD) mass spectrometry (MS), the method can deliver both positive and negative even electron ions of highly polar or ionic compounds. Furthermore, APFD even permits the generation of positive molecular ions of polycyclic aromatic compounds. Here, an application of negative-ion APFD for the analysis of anionic surfactants contained in commercial detergent products for body care, household, and technical uses is presented. The samples include liquid soaps and shower gels, dishwashing liquids, and cooling lubricants. Surfactant solutions in methanol/water or pure methanol at 2-10 µl ml-1 were deposited on commercial 13-µm activated tungsten emitters. The emitters were positioned in front of the atmospheric pressure interface of a Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometer by means of a slightly modified nano-electrospray ionization (nanoESI) source. The entrance electrode of the interface was set to positive high voltage with respect to the emitter at ground potential. Under these conditions, negative-ion desorption was achieved. The surfactant anions, organic sulfates and organic sulfonates, were characterized by accurate mass-based formula assignments, and in part, by tandem mass spectrometry. The negative-ion APFD spectra were compared to results by negative-ion electrospray ionization (ESI) either obtained using the FT-ICR mass spectrometer or by using a trapped ion mobility-quadrupole-time-of-flight (TIMS-Q-TOF) instrument when product ions of low m/z needed to be detected in tandem MS.
Collapse
Affiliation(s)
- Jürgen H Gross
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.
| |
Collapse
|
2
|
Hoyer M, Gross JH. Molecular ion formation on activated field emitters in atmospheric pressure field desorption mass spectrometry. Anal Bioanal Chem 2023; 415:2307-2315. [PMID: 36961573 PMCID: PMC10115680 DOI: 10.1007/s00216-023-04652-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/25/2023]
Abstract
Atmospheric pressure field desorption (APFD) mass spectrometry (MS) has recently been explored as a new contribution to the field of ambient desorption/ionization (ADI). Depending on the selected polarity applied to the field emitter, ionic and polar analytes were demonstrated to deliver positive as well as negative ions. Whereas this recent study solely reported on the formation of even-electron ions of either polarity, the present work on APFD-MS demonstrates the abundant formation of positive molecular ions, M+•, from polycyclic aromatic compounds. Molecular ions were formed on and desorbed from standard 13-µm activated tungsten wire emitters at atmospheric pressure. The commercial field emitters were positioned at about 2 mm distance in front of the atmospheric pressure interface of a Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometer and the entrance electrode of the interface was set to -4.5 to -5.5 kV with respect to the emitter. Emitter-disrupting electric discharges did normally not occur under these conditions. The electric field strengths achieved at the dendritic microneedles were sufficient to allow for the abundant formation of M+• ions of various polycyclic aromatic compounds such as benzo[a]pyrene, anthracene, fluoranthene, 1,1,4,4-tetraphenyl-butadiene, and 1-aza-[6]helicene. In case of the extremely basic 1-aza-[6]helicene protonation strongly competed with molecular ion formation and tended to suppress the field ionization process. All molecular ion compositions were assured by accurate mass-based formula assignments.
Collapse
Affiliation(s)
- Matthias Hoyer
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Jürgen H Gross
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.
| |
Collapse
|
3
|
Gross JH. Desorption of positive and negative ions from activated field emitters at atmospheric pressure. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2023; 29:21-32. [PMID: 36254584 PMCID: PMC9903004 DOI: 10.1177/14690667221133388] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Field desorption (FD) traditionally is an ionization technique in mass spectrometry (MS) that is performed in high vacuum. So far only two studies have explored FD at atmospheric pressure or even superatmospheric pressure, respectively. This work pursues ion desorption from 13-µm activated tungsten emitters at atmospheric pressure. The emitters are positioned in front of the atmospheric pressure interface of a Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometer and the entrance electrode of the interface is set to 3-5 kV with respect to the emitter. Under these conditions positive, and for the first time, negative ion desorption is achieved. In either polarity, atmospheric pressure field desorption (APFD) is robust and spectra are reproducible. Both singly charged positive and negative ions formed by these processes are characterized by accurate mass-based formula assignments and in part by tandem mass spectrometry. The compounds analyzed include the ionic liquids trihexyl(tetradecyl) phosphonium tris(pentafluoroethyl) trifluorophosphate) and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, the acidic compounds perfluorononanoic acid and polyethylene glycol diacid, as well as two amino-terminated polypropylene glycols. Some surface mobility on the emitter is prerequisite for ion desorption to occur. While ionic liquids inherently provide this mobility, the desorption of ions from solid analytes requires the assistance of a liquid matrix, e.g. glycerol.
Collapse
Affiliation(s)
- Jürgen H Gross
- Institute of Organic Chemistry, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
4
|
Linden MH, Linden HB, Gross JH. Negative-ion field desorption revitalized by using liquid injection field desorption/ionization-mass spectrometry on recent instrumentation. Anal Bioanal Chem 2021; 413:6845-6855. [PMID: 34494122 PMCID: PMC8551092 DOI: 10.1007/s00216-021-03641-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 12/03/2022]
Abstract
Field ionization (FI), field desorption (FD), and liquid injection field desorption/ionization (LIFDI) provide soft positive ionization of gaseous (FI) or condensed phase analytes (FD and LIFDI). In contrast to the well-established positive-ion mode, negative-ion FI or FD have remained rare exceptions. LIFDI provides sample deposition under inert conditions, i.e., the exclusion of atmospheric oxygen and water. Thus, negative-ion LIFDI could potentially be applied to highly sensitive anionic compounds like catalytically active transition metal complexes. This work explores the potential of negative-ion mode using modern mass spectrometers in combination with an LIFDI source and presents first results of the application of negative-ion LIFDI-MS. Experiments were performed on two orthogonal-acceleration time-of-flight (oaTOF) instruments, a JEOL AccuTOF GCx and a Waters Micromass Q-TOF Premier equipped with LIFDI sources from Linden CMS. The examples presented include four ionic liquids (ILs), i.e., N-butyl-3-methylpyridinium dicyanamide, 1-butyl-3-methylimidazolium tricyanomethide, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, and trihexyl(tetradecyl)phosphonium tris(pentafluoroethyl)trifluorophosphate), 3-(trifluoromethyl)-phenol, dichloromethane, iodine, polyethylene glycol diacid, perfluorononanoic acid, anionic surfactants, a tetraphosphazene silanol-silanolate, and two bis(catecholato)silanes. Volatile samples were delivered as vapors via the sample transfer capillary of the LIFDI probe or via a reservoir inlet. Condensed phase samples were applied to the emitter as dilute solutions via the sample transfer capillary. The compounds either yielded ions corresponding to their intact anions, A-, or the [M-H]- species formed upon deprotonation. This study describes the instrumental setups and the operational parameters for robust operation along with a discussion of the negative-ion LIFDI spectra of a variety of compounds.
Collapse
Affiliation(s)
| | | | - Jürgen H Gross
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.
| |
Collapse
|
5
|
Gross JH. Poly(2-vinylpyridine) as a reference compound for mass calibration in positive-ion matrix-assisted laser desorption/ionization-mass spectrometry on different instrumental platforms. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2021; 27:191-204. [PMID: 34738841 PMCID: PMC8586192 DOI: 10.1177/14690667211055701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Butyl-terminated poly(2-vinylpyridine) (P2VP), C4H9(C7H7N)nH, is evaluated for use as an external and internal mass calibrant in positive-ion matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). P2VP oligomers covering the m/z 450-4500 range are employed to calibrate a time-of-flight (TOF) mass spectrometer in linear and reflector mode, an ion mobility-quadrupole-time-of-flight (IM-Q-TOF) mass spectrometer, and a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The proton affinity of P2VPs introduced by the numerous pyridyl groups leads to the almost exclusive formation of [M + H]+ ions with common acidic matrices like α-cyano-4-hydroxycinnamic acid (CHCA) and 2,5-dihydroxybenzoic acid (DHB) as well as with the non-acidic and aprotic matrices 1,8-dihydroxy-10H-anthracen-9-on (dithranol) and 2-[(2E)-3-(4-tert-butylphenyl)-2-methylprop-2-enylidene]malonitrile (DCTB). This prevalence of [M + H]+ ions evenly spaced at Δ(m/z) = 105.0578 renders butyl-terminated P2VP oligomers as convenient mass calibrants. The mass accuracies achieved across various m/z ranges with different mass analyzers and modes of operation are evaluated by using established standard compounds. Results as obtained by internal or external calibration are presented. Further, the compilation of mass reference lists tailored to suit the respective analyzer modes is discussed and those reference files are provided.
Collapse
Affiliation(s)
- Jürgen H Gross
- Jürgen H Gross, Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.
| |
Collapse
|
6
|
Gross JH. Saccharose cluster ions as mass calibrants in positive-ion direct analysis in real time-mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2020; 26:324-331. [PMID: 32921168 DOI: 10.1177/1469066720958535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In positive-ion direct analysis in real time-mass spectrometry (DART-MS), mono-, di, and trisaccharides form [M+NH4]+ ions. Some of them, in addition, yield abundant [Mn+NH4]+ cluster ions (n = 1-6)), and thus, can serve for mass calibration. Saccharose, C12H22O11, the most common sugar, also termed sucrose, is among the [Mn+NH4]+ cluster ion forming species. Saccharose may therefore be employed as a cheap and ubiquitous mass calibration standard. The extent of saccharose cluster ion formation depends on the temperature of the DART gas, sample load, and instrumental parameters like trapping conditions of ions prior to mass analysis. This study identifies optimized experimental conditions and demonstrates the application of saccharose cluster ion-based mass calibration for accurate mass measurements in DART mode on a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer.
Collapse
Affiliation(s)
- Jürgen H Gross
- Institute of Organic Chemistry, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
7
|
Stróżyńska M, H Gross J, Schuhen K. Structural investigation of perfluorocarboxylic acid derivatives formed in the reaction with N,N-dimethylformamide dialkylacetals. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2020; 26:131-143. [PMID: 31594396 DOI: 10.1177/1469066719880546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A structural investigation of perfluorocarboxylic acid derivatives formed in the reaction with N,N-dimethylformamide dialkylacetals employing several techniques of mass spectrometry (MS) is described. Two derivatizing reagents, dimethylformamide dimethyl acetal (DMF-DMA) and dimethylformamide diethylacetal (DMF-DEA) were used. In contrast to carboxylic acids, perfluorocarboxylic acids are not able to form alkyl esters as the main product in this reaction. We found that perfluorooctanoic acid (PFOA) forms a salt with N,N-dimethylformamide dialkylacetals. This salt undergoes a further reaction inside the injection block of a gas chromatograph (GC) by loss of CO2 and then forms 1,1-perfluorooctane-(N,N,N,N-tetramethyl)-diamine. The GC-MS experiments using both electron ionization (EI) and positive-ion chemical ionization (PCI) revealed that the same reaction products are formed with either derivatizing reagent. Subjecting the perfluorocarboxylic acid derivative to electrospray ionization (ESI) and direct analysis in real time (DART), both positive- and negative-ion modes indicated that cluster ions are formed. In the positive-ion mode, this cluster ion consists of two iminium cations and one PFOA anion, while in the negative-ion mode, it comprises two PFOA anions and one cation. The salt structure was further confirmed by liquid injection field desorption/ionization (LIFDI) as well as infrared (IR) spectroscopy. We propose a simple mechanism of N,N,N',N'-tetramethylformamidinium cation formation. The structure elucidation is supported by specific fragment ions as obtained by GC-EI-MS and GC-PCI-MS analyses.
Collapse
Affiliation(s)
- Monika Stróżyńska
- Wasser 3.0/abcr GmbH, Karlsruhe, Germany
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau in der Pfalz, Germany
| | - Jürgen H Gross
- Institute of Organic Chemistry, Heidelberg University, Heidelberg, Germany
| | | |
Collapse
|
8
|
Fu L, Sun X, Gao Y, Chen R. Tannic Acid: a Novel Calibrator for Facile and Accurate Mass Measurement of Electrospray Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1545-1549. [PMID: 31214925 DOI: 10.1007/s13361-019-02211-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/06/2019] [Accepted: 02/24/2019] [Indexed: 06/09/2023]
Abstract
Accurate mass calibration is beneficial to the identification of the unknown compounds quickly and accurately. The ESI mass spectrum of tannic acid (TA) tends to a normal distribution of the cluster ion peaks in m/z range from 371.0368 to 1739.1169. Based on the interesting result, we reported the use of TA, a natural plant polyphenol, as a novel calibrator for electrospray ionization mass spectrometry (ESI MS), which has the following three advantages, including (1) easy preparation, (2) the calibration range of m/z 200~2000, and (3) the calibration error is around 3.00 ppm in positive ion mode, which is less than the use of sodium formate (SF) and Prod #88323 calibrators. This TA calibrator has great potential for the wide applications in biological, chemical, and pharmacal analysis.
Collapse
Affiliation(s)
- Ling Fu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, China
| | - Xiaochun Sun
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, China
| | - Yumei Gao
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, China
| | - Rui Chen
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, China.
| |
Collapse
|
9
|
|
10
|
Cody RB, Dane AJ. Alternative mass reference standards for direct analysis in real time mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:1206-1212. [PMID: 28328026 DOI: 10.1002/rcm.7554] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/03/2016] [Accepted: 03/06/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE Mass spectra were acquired with the Direct Analysis in Real Time (DART®) ion source for an amine-terminated polyether used as positive-ion mass reference standards and for several fluorinated materials commonly used as negative-ion reference standards for mass spectrometry. METHODS A commercial time-of-flight mass spectrometer equipped with a DART ion source was used for all measurements. Mass reference standards deposited onto the sealed end of a glass melting point tube were suspended in the DART gas stream for analysis. RESULTS A polyetheramine (Jeffamine® M-600) produced intense peaks corresponding to protonated molecules. Perfluorotributylamine (PFTBA), and perfluorotripentylamine, gave useful reference spectra for different m/z ranges. DART mass spectra of Ultramark 1621® resembled those previously reported for Fast Atom Bombardment (FAB) and Electrospray Ionization (ESI). Fomblin®Y, a fluorinated ether, was the most useful negative-ion reference standard of the materials tested. The material is commercially available, inexpensive, and provides reference peaks covering the m/z range 85 to >3000. CONCLUSIONS Jeffamine-M600 was found to be a convenient alternative to polyethers such as polyethylene glycol (PEG) for DART positive-ion mass calibration. Fomblin Y was suitable for use as a negative-ion reference standard. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Robert B Cody
- JEOL USA, Inc., 11 Dearborn Rd., Peabody, MA, 01960, USA
| | - A John Dane
- JEOL USA, Inc., 11 Dearborn Rd., Peabody, MA, 01960, USA
| |
Collapse
|
11
|
Sen R, Escorihuela J, Smulders MMJ, Zuilhof H. Use of Ambient Ionization High-Resolution Mass Spectrometry for the Kinetic Analysis of Organic Surface Reactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:3412-9. [PMID: 27028705 DOI: 10.1021/acs.langmuir.6b00427] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In contrast to homogeneous systems, studying the kinetics of organic reactions on solid surfaces remains a difficult task due to the limited availability of appropriate analysis techniques that are general, high-throughput, and capable of offering quantitative, structural surface information. Here, we demonstrate how direct analysis in real time mass spectrometry (DART-MS) complies with above considerations and can be used for determining interfacial kinetic parameters. The presented approach is based on the use of a MS tag that--in principle--allows application to other reactions. To show the potential of DART-MS, we selected the widely applied strain-promoted alkyne-azide cycloaddition (SPAAC) as a model reaction to elucidate the effects of the nanoenvironment on the interfacial reaction rate.
Collapse
Affiliation(s)
- Rickdeb Sen
- Laboratory of Organic Chemistry, Wageningen University , Dreijenplein 8, 6703 HB Wageningen, The Netherlands
| | - Jorge Escorihuela
- Laboratory of Organic Chemistry, Wageningen University , Dreijenplein 8, 6703 HB Wageningen, The Netherlands
| | - Maarten M J Smulders
- Laboratory of Organic Chemistry, Wageningen University , Dreijenplein 8, 6703 HB Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University , Dreijenplein 8, 6703 HB Wageningen, The Netherlands
- Department of Chemical and Materials Engineering, King Abdulaziz University , Jeddah, Saudi Arabia
| |
Collapse
|
12
|
Jakob A, Crawford EA, Gross JH. Detection of polydimethylsiloxanes transferred from silicone-coated parchment paper to baked goods using direct analysis in real time mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:298-304. [PMID: 27041660 DOI: 10.1002/jms.3757] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/01/2016] [Accepted: 02/07/2016] [Indexed: 06/05/2023]
Abstract
The non-stick properties of parchment papers are achieved by polydimethylsiloxane (PDMS) coatings. During baking, PDMS can thus be extracted from the silicone-coated parchment into the baked goods. Positive-ion direct analysis in real time (DART) mass spectrometry (MS) is highly efficient for the analysis of PDMS. A DART-SVP source was coupled to a quadrupole-time-of-flight mass spectrometer to detect PDMS on the contact surface of baked goods after use of silicone-coated parchment papers. DART spectra from the bottom surface of baked cookies and pizzas exhibited signals because of PDMS ions of the general formula [(C2H6SiO)n + NH4 ](+) in the m/z 800-1900 range.
Collapse
Affiliation(s)
- Andreas Jakob
- Bruker Daltonik GmbH, Fahrenheitstraße 4, 28359, Bremen, Germany
| | - Elizabeth A Crawford
- Institute of Bioanalytical Chemistry, Saarland University, Campus B2 2, 66123, Saarbrücken, Germany
| | - Jürgen H Gross
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
13
|
Abdelhamid HN. Ionic liquids for mass spectrometry: Matrices, separation and microextraction. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.12.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Gross JH. Letter: High-mass capabilities of positive-ion and negative-ion direct analysis in real time mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2016; 22:43-48. [PMID: 26863075 DOI: 10.1255/ejms.1409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Of the ionic liquid 1-butyl-3-methylimidazolium (C(+)) tricyanomethide (A(-)) high-mass cluster ions of both positive ([C(n)A(n-1)](+)) and negative ([C(n-1)A(n)](-)) charge were generated and detected by direct analysis in real time (DART) Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS). After optimization of the settings of the DART ionization source and of the mass analyzer ions of m/z values unprecedented in DART-MS were detected. Thus, the upper m/z limits of positive-ion and negative-ion DART- MS were substantially expanded. Negative-ion DART-MS delivered cluster ions up to [C(15)A(16)](-), m/z 3527 (nominal mass of monoisotopic ion), while positive-ion DART-MS even yielded ions up to [C(30)A(29)](+), m/z 6784. The identification of the cluster ions is supported by their accurate mass and exact mass differences corresponding to CA between adjacent cluster ion peaks.
Collapse
Affiliation(s)
- Jürgen H Gross
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg Germany.
| |
Collapse
|
15
|
Gross JH. Analysis of silicones released from household items and baby articles by direct analysis in real time-mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:511-521. [PMID: 25510929 DOI: 10.1007/s13361-014-1042-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 10/14/2014] [Accepted: 10/14/2014] [Indexed: 06/04/2023]
Abstract
Direct analysis in real time-mass spectrometry (DART-MS) enables screening of articles of daily use made of polydimethylsiloxanes (PDMS), commonly known as silicone rubber, to assess their tendency to release low molecular weight silicone oligomers. DART-MS analyses were performed on a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. Flexible silicone baking molds, a watch band, and a dough scraper, as baby articles different brands of pacifiers, nipples, and a teething ring have been examined. While somewhat arbitrarily chosen, the set can be regarded as representative of household items, baby articles, and other objects made of silicone rubber. For comparison, two brands of silicone septa and as blanks a glass slide and a latex pacifier were included. Differences between the objects were mainly observed in terms of molecular weight distribution and occasional release of other compounds in addition to PDMS. Other than that, all objects made of silicone rubber released significant amounts of PDMS during DART analysis. To provide a coarse quantification, a calibration based on silicone oil was established, which delivered PDMS losses from 20 μg to >100 μg during the 16-s period per measurement. Also, the extraction of baking molds in rapeseed oil demonstrated a PDMS release at the level of 1 μg mg(-1). These findings indicate a potential health hazard from frequent or long-term use of such items. This work does not intend to blame certain brands of such articles. Nonetheless, a higher level of awareness of this source of daily silicone intake is suggested.
Collapse
Affiliation(s)
- Jürgen H Gross
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany,
| |
Collapse
|
16
|
Gross JH. Polydimethylsiloxane extraction from silicone rubber into baked goods detected by direct analysis in real time mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2015; 21:313-319. [PMID: 26307711 DOI: 10.1255/ejms.1333] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Flexible baking molds and other household utensils are made of polydimethylsiloxane (PDMS), also known as silicone rubber. PDMS is prone to release oligomers upon elongated contact with fats, e.g., in the process of baking dough. Positive-ion direct analysis in real time (DART) mass spectrometry (MS) provides an efficient tool for the analysis of PDMS up to m/z 3000. Here, DART ionization is employed in combination with Fourier transform ion cyclotron resonance MS to detect PDMS released into muffins when baked in silicone rubber baking molds. Intensive signals caused by PDMS do occur in the m/z 700-1500 range of DART mass spectra obtained from the crusty surface of muffins after the use of such silicone rubber molds. In addition, triacylglyceroles (TAGs) present as natural ingredients of the analyzed muffins were detected as [TAG+NH(4)](+) ions.
Collapse
Affiliation(s)
- Jürgen H Gross
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.
| |
Collapse
|