1
|
Hu Y, Kadotani J, Kuwahara Y, Ihara H, Takafuji M. Zwitterionic polymer-terminated porous silica stationary phases for highly selective separation in hydrophilic interaction chromatography. J Chromatogr A 2023; 1693:463885. [PMID: 36848731 DOI: 10.1016/j.chroma.2023.463885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023]
Abstract
We described two novel zwitterionic polymer-terminated porous silica stationary phases containing the same pyridinium cation and anions of different side chains (carboxylate and phosphonate groups) for use in hydrophilic interaction liquid chromatography (HILIC). These two novel columns were prepared by polymerizing 4-vinylpyridine and grafting it onto a silica surface, followed by quaternization reaction with 3-bromopropionic acid (Sil-VPC24) and (3-bromopropyl) phosphonic acid (Sil-VPP24), which possess positively charged pyridinium groups, and negatively charged carboxylate and phosphonate groups, respectively. The products obtained were verified through relevant characterization techniques such as elemental analysis, Fourier-transform infrared spectroscopy, thermogravimetric analysis, Zeta potential analysis, and Brunauer-Emmett-Teller analysis. The retention properties and mechanisms of different types of compounds (neutral, cationic, and anionic) on the two zwitterionic-modified silica stationary phases were studied by varying the buffer salt concentration and pH of the eluent. The separation of phenol and aromatic acids, disubstituted benzene isomers, sulfonamide drugs, as well as nucleosides/nucleobases were investigated on the two packed novel columns and a commercial zwitterionic column in identical HILIC mode, ensuring a thorough comparison between both novel columns and with a commercial standard. The results illustrated that various compounds could be separated up to various efficiencies based on the mechanism of hydrophilic interaction-based retention between the solutes and the two zwitterionic polymer stationary phases. The Sil-VPP24 column demonstrated the best separation performance out of the three, as well as flexible selectivity and excellent resolution. Both novel columns exhibited excellent stability and chromatographic repeatability for the separation of seven nucleosides and bases.
Collapse
Affiliation(s)
- Yongxing Hu
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Jun Kadotani
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Yutaka Kuwahara
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Hirotaka Ihara
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan; National Institute of Technology, Okinawa College, 905, Henoko, Okinawa 905-2192, Japan
| | - Makoto Takafuji
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| |
Collapse
|
2
|
Mallik AK, Qiu H, Takafuji M, Ihara H. High molecular-shape-selective stationary phases for reversed-phase liquid chromatography: A review. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
3
|
Nawała J, Dawidziuk B, Dziedzic D, Gordon D, Popiel S. Applications of ionic liquids in analytical chemistry with a particular emphasis on their use in solid-phase microextraction. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.04.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
4
|
Qiao L, Lv W, Chang M, Shi X, Xu G. Surface-bonded amide-functionalized imidazolium ionic liquid as stationary phase for hydrophilic interaction liquid chromatography. J Chromatogr A 2018; 1559:141-148. [PMID: 28734605 DOI: 10.1016/j.chroma.2017.07.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/08/2017] [Accepted: 07/10/2017] [Indexed: 12/25/2022]
Abstract
The amide group modified silica materials are popular stationary phases for hydrophilic interaction liquid chromatography (HILIC). Meanwhile, surface-confined imidazolium ionic liquids (ILs) have been proved to be useful HILIC stationary phases and possess many unique properties. In this study, the synthesis of an amide-functionalized imidazolium IL was conducted which was then bonded onto silica surface to obtain a novel imidazolium-embedded amide stationary phase for HILIC. The combination of the amide group and imidazolium IL moiety might bring some advantages in selectivity or retention and therefore extended its applications. After characterizing the prepared IL and the resulting modified silica materials, the chromatographic performance and separation selectivity of the packed column were evaluated and compared with a commercial amide column. Then, the retention behavior was investigated through observing the retention factors at different chromatographic conditions using a wide range of compounds. Exceptionally, the prepared amide IL column exhibited superior separation performance towards complex samples such as flavonoids mixture, soybean flavonoids and human urine. All the results indicated that the novel amide IL column possessed an anion-exchange/HILIC mixed-mode retention mechanism and could be useful in the sample analysis as a promising candidate for HILIC stationary phase.
Collapse
Affiliation(s)
- Lizhen Qiao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; School of Petroleum and Chemical Engineering, Dalian University of Technology, Panjin, 124221, China
| | - Wangjie Lv
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengmeng Chang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianzhe Shi
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Guowang Xu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
5
|
Qiao X, Zhang L, Zhang N, Wang X, Qin X, Yan H, Liu H. Imidazolium embedded C8 based stationary phase for simultaneous reversed-phase/hydrophilic interaction mixed-mode chromatography. J Chromatogr A 2015; 1400:107-16. [PMID: 25981287 DOI: 10.1016/j.chroma.2015.04.060] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 04/26/2015] [Accepted: 04/28/2015] [Indexed: 11/27/2022]
Abstract
A new imidazolium embedded C8 based stationary phase (SIL-MPS-VOL) was facilely prepared by two steps and characterized by Fourier transform infrared spectrometry and thermogravimetric analysis. Due to the introduction of quaternary imidazolium group to the traditional C8 stationary phase, the developed SIL-MPS-VOL column demonstrated both reversed-phase liquid chromatography (RPLC) and hydrophilic interaction liquid chromatography (HILIC) retention mechanisms. A series of hydrophobic and hydrophilic test samples, including benzene homologues, anilines, positional isomers, nucleosides and nucleotides, were used to evaluate the developed SIL-MPS-VOL stationary phase. A rapid separation time, high separation efficiency and planar selectivity were achieved, compared with the commercially available C8 column. Moreover, the developed stationary phase was further used to detect and separate of melamine in powdered infant formula and high polar component of secondary metabolites of Trichoderma, and improved separation efficiency was achieved, indicating the potential merits of the developed SIL-MPS-VOL stationary phase for simultaneous separation of complex hydrophobic and hydrophilic samples with high selectivity.
Collapse
Affiliation(s)
- Xiaoqiang Qiao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education and Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.
| | - Lu Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education and Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Niu Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education and Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Xin Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education and Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Xinying Qin
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education and Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Hongyuan Yan
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education and Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Haiyan Liu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education and Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| |
Collapse
|
6
|
Preparation and evaluation of a novel hybrid monolithic column based on pentafluorobenzyl imidazolium bromide ionic liquid. J Chromatogr A 2015; 1375:101-9. [DOI: 10.1016/j.chroma.2014.11.084] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 10/23/2014] [Accepted: 11/28/2014] [Indexed: 12/21/2022]
|