1
|
Aldrich JL, Panicker A, Ovalle R, Sharma B. Drug Delivery Strategies and Nanozyme Technologies to Overcome Limitations for Targeting Oxidative Stress in Osteoarthritis. Pharmaceuticals (Basel) 2023; 16:1044. [PMID: 37513955 PMCID: PMC10383173 DOI: 10.3390/ph16071044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Oxidative stress is an important, but elusive, therapeutic target for osteoarthritis (OA). Antioxidant strategies that target oxidative stress through the elimination of reactive oxygen species (ROS) have been widely evaluated for OA but are limited by the physiological characteristics of the joint. Current hallmarks in antioxidant treatment strategies include poor bioavailability, poor stability, and poor retention in the joint. For example, oral intake of exogenous antioxidants has limited access to the joint space, and intra-articular injections require frequent dosing to provide therapeutic effects. Advancements in ROS-scavenging nanomaterials, also known as nanozymes, leverage bioactive material properties to improve delivery and retention. Material properties of nanozymes can be tuned to overcome physiological barriers in the knee. However, the clinical application of these nanozymes is still limited, and studies to understand their utility in treating OA are still in their infancy. The objective of this review is to evaluate current antioxidant treatment strategies and the development of nanozymes as a potential alternative to conventional small molecules and enzymes.
Collapse
Affiliation(s)
| | | | | | - Blanka Sharma
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; (J.L.A.)
| |
Collapse
|
2
|
Olivieri PH, Jesus MB, Nader HB, Justo GZ, Sousa AA. Cell-surface glycosaminoglycans regulate the cellular uptake of charged polystyrene nanoparticles. NANOSCALE 2022; 14:7350-7363. [PMID: 35535683 DOI: 10.1039/d1nr07279j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Engineered nanoparticles approaching the cell body will first encounter and interact with cell-surface glycosaminoglycans (GAGs) before reaching the plasma membrane and becoming internalized. However, how surface GAGs may regulate the cellular entry of nanoparticles remains poorly understood. Herein, it is shown that the surface GAGs of Chinese hamster ovary cells perform as a charge-based barrier against the cellular internalization of anionic polystyrene nanoparticles (PS NPs). In contrast, cationic PS NPs interact favorably with the surface GAGs and thereby are efficiently internalized. Anionic PS NPs eventually reaching the plasma membrane bind to scavenger receptors and are endocytosed by clathrin-mediated and lipid raft/cholesterol-dependent mechanisms, whereas cationic PS NPs are primarily internalized via clathrin-mediated endocytosis and macropinocytosis. Upon the enzymatic shedding of surface GAGs, the uptake of anionic PS NPs increases while that of cationic PS NPs is dramatically reduced. Interestingly, the diminished uptake of cationic PS NPs is observed only when heparan sulfate, but not chondroitin sulfate, is cleaved from the cell surface. Heparan sulfate therefore serves as anchors/first receptors to facilitate the cellular entry of cationic PS NPs. These findings contribute to advance the basic science of nanoparticle endocytosis while also having important implications for the use of engineered nanocarriers as intracellular drug-delivery systems.
Collapse
Affiliation(s)
- Paulo H Olivieri
- Department of Biochemistry, Federal University of São Paulo, São Paulo, SP 04044-020, Brazil.
| | - Marcelo B Jesus
- Department of Biochemistry & Tissue Biology, University of Campinas, Campinas, SP 13083-970, Brazil
| | - Helena B Nader
- Department of Biochemistry, Federal University of São Paulo, São Paulo, SP 04044-020, Brazil.
| | - Giselle Z Justo
- Department of Pharmaceutical Sciences and Department of Biochemistry, Federal University of São Paulo, Diadema, SP 09972-270, Brazil.
| | - Alioscka A Sousa
- Department of Biochemistry, Federal University of São Paulo, São Paulo, SP 04044-020, Brazil.
| |
Collapse
|
3
|
Ma J, Wang X, Feng J, Huang C, Fan Z. Individual Plasmonic Nanoprobes for Biosensing and Bioimaging: Recent Advances and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004287. [PMID: 33522074 DOI: 10.1002/smll.202004287] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/27/2020] [Indexed: 06/12/2023]
Abstract
With the advent of nanofabrication techniques, plasmonic nanoparticles (PNPs) have been widely applied in various research fields ranging from photocatalysis to chemical and bio-sensing. PNPs efficiently convert chemical or physical stimuli in their local environment into optical signals. PNPs also have excellent properties, including good biocompatibility, large surfaces for the attachment of biomolecules, tunable optical properties, strong and stable scattering light, and good conductivity. Thus, single optical biosensors with plasmonic properties enable a broad range of uses of optical imaging techniques in biological sensing and imaging with high spatial and temporal resolution. This work provides a comprehensive overview on the optical properties of single PNPs, the description of five types of commonly used optical imaging techniques, including surface plasmon resonance (SPR) microscopy, surface-enhanced Raman scattering (SERS) technique, differential interference contrast (DIC) microscopy, total internal reflection scattering (TIRS) microscopy, and dark-field microscopy (DFM) technique, with an emphasis on their single plasmonic nanoprobes and mechanisms for applications in biological imaging and sensing, as well as the challenges and future trends of these fields.
Collapse
Affiliation(s)
- Jun Ma
- Department of Vasculocardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xinyu Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jian Feng
- Department of Vasculocardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Chengzhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Zhongcai Fan
- Department of Vasculocardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China
| |
Collapse
|
4
|
Katoozi D, Clayton AHA, Moss DJ, Chon JWM. Uptake quantification of gold nanoparticles inside of cancer cells using high order image correlation spectroscopy. BIOMEDICAL OPTICS EXPRESS 2021; 12:539-552. [PMID: 33659088 PMCID: PMC7899503 DOI: 10.1364/boe.417321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
The application of gold nanoparticles (AuNPs) in cancer therapeutics and diagnostics has recently reached a clinical level. Functional use of the AuNP in theranostics first requires effective uptake into the cells, but accurate quantification of AuNPs cellular uptake in real-time is still a challenge due to the destructive nature of existing characterization methods. The optical imaging-based quantification method is highly desirable. Here, we propose the use of high-order image correlation spectroscopy (HICS) as an optical imaging-based nanoparticle quantification technique. Coupled with dark field microscopy (DFM), a non-destructive and easy quantification method could be achieved. We demonstrate HICS analysis on 80 nm AuNPs coated with cetyltrimethylammonium bromide (CTAB) uptake in HeLa cells to calculate the percentage of aggregate species (dimer) in the total uptake and their relative scattering quantum yield inside the cells, the details of which are not available with other quantification techniques. The total particle uptake kinetics measured were in a reasonable agreement with the literature.
Collapse
|
5
|
Poller WC, Löwa N, Schleicher M, Münster-Wandowski A, Taupitz M, Stangl V, Ludwig A, Wiekhorst F. Initial interaction of citrate-coated iron oxide nanoparticles with the glycocalyx of THP-1 monocytes assessed by real-time magnetic particle spectroscopy and electron microscopy. Sci Rep 2020; 10:3591. [PMID: 32107402 PMCID: PMC7046775 DOI: 10.1038/s41598-020-60162-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/04/2020] [Indexed: 11/09/2022] Open
Abstract
Interaction with biological material can alter physicochemical parameters of magnetic nanoparticles and might thereby change their magnetic behavior with potentially important implications for various nanoparticle applications. Little is known about changes of the magnetic behavior that occur during the initial phase of cell binding and uptake. We investigate the magnetic behavior of very small superparamagnetic iron-oxide nanoparticles (VSOP) during initial contact with THP-1 monocytes. We combine real-time magnetic particle spectroscopy (MPS), a fast and sensitive method for specific detection of magnetic nanoparticles in biological specimen with high-pressure-freezing/freeze-substitution transmission electron microscopy (HPF/FS-TEM), enabling us to generate snapshots of the interaction of VSOP with the cellular glycocalyx. MPS reveals significant changes of the dynamic magnetic behavior within seconds after VSOP injection into monocyte suspensions that correlate with the formation of nanoparticle clusters in the glycocalyx. The combination of real-time MPS and HPF/FS-TEM provides an ideal platform to analyze magnetic behaviors of nanoparticles upon interaction with cells and tissues.
Collapse
Affiliation(s)
- Wolfram C Poller
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Medizinische Klinik mit Schwerpunkt Kardiologie und Angiologie, Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.
| | - Norbert Löwa
- Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587, Berlin, Germany.
| | - Moritz Schleicher
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Medizinische Klinik mit Schwerpunkt Kardiologie und Angiologie, Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Agnieszka Münster-Wandowski
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Institut für Integrative Neuroanatomie, Charitéplatz 1, 10117, Berlin, Germany
| | - Matthias Taupitz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Institut für Radiologie, Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany
| | - Verena Stangl
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Medizinische Klinik mit Schwerpunkt Kardiologie und Angiologie, Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Antje Ludwig
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Medizinische Klinik mit Schwerpunkt Kardiologie und Angiologie, Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Institut für Radiologie, Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Frank Wiekhorst
- Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587, Berlin, Germany
| |
Collapse
|
6
|
Libralato G, Galdiero E, Falanga A, Carotenuto R, de Alteriis E, Guida M. Toxicity Effects of Functionalized Quantum Dots, Gold and Polystyrene Nanoparticles on Target Aquatic Biological Models: A Review. Molecules 2017; 22:molecules22091439. [PMID: 28858240 PMCID: PMC6151384 DOI: 10.3390/molecules22091439] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/17/2017] [Accepted: 08/28/2017] [Indexed: 12/20/2022] Open
Abstract
Nano-based products are widespread in several sectors, including textiles, medical-products, cosmetics, paints and plastics. Nanosafety and safe-by-design are driving nanoparticle (NP) production and applications through NP functionalization (@NPs). Indeed, @NPs frequently present biological effects that differ from the parent material. This paper reviews the impact of quantum dots (QDs), gold nanoparticles (AuNPs), and polystyrene-cored NPs (PSNPs), evidencing the role of NP functionalization in toxicity definition. Key biological models were taken into consideration for NP evaluation: Saccharomyces cerevisiae, fresh- (F) and saltwater (S) microalgae (Raphidocelis subcapitata (F), Scenedesmus obliquus (F) and Chlorella spp. (F), and Phaeodactylum tricornutum (S)), Daphnia magna, and Xenopus laevis. QDs are quite widespread in technological devices, and they are known to induce genotoxicity and oxidative stress that can drastically change according to the coating employed. For example, AuNPs are frequently functionalized with antimicrobial peptides, which is shown to both increase their activity and decrease the relative environmental toxicity. P-NPs are frequently coated with NH2− for cationic and COOH− for anionic surfaces, but when positively charged toxicity effects can be observed. Careful assessment of functionalized and non-functionalized NPs is compulsory to also understand their potential direct and indirect effects when the coating is removed or degraded.
Collapse
Affiliation(s)
- Giovanni Libralato
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, via Cinthia ed. 7, 80126 Naples, Italy.
| | - Emilia Galdiero
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, via Cinthia ed. 7, 80126 Naples, Italy.
| | - Annarita Falanga
- Department of Pharmacy, University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy.
| | - Rosa Carotenuto
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, via Cinthia ed. 7, 80126 Naples, Italy.
| | - Elisabetta de Alteriis
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, via Cinthia ed. 7, 80126 Naples, Italy.
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, via Cinthia ed. 7, 80126 Naples, Italy.
| |
Collapse
|
7
|
Chang PS, McLane LT, Fogg R, Scrimgeour J, Temenoff JS, Granqvist A, Curtis JE. Cell Surface Access Is Modulated by Tethered Bottlebrush Proteoglycans. Biophys J 2017; 110:2739-2750. [PMID: 27332132 DOI: 10.1016/j.bpj.2016.05.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/04/2016] [Accepted: 05/13/2016] [Indexed: 12/18/2022] Open
Abstract
The hyaluronan-rich pericellular matrix (PCM) plays physical and chemical roles in biological processes ranging from brain plasticity, to adhesion-dependent phenomena such as cell migration, to the onset of cancer. This study investigates how the spatial distribution of the large negatively charged bottlebrush proteoglycan, aggrecan, impacts PCM morphology and cell surface access. The highly localized pericellular milieu limits transport of nanoparticles in a size-dependent fashion and sequesters positively charged molecules on the highly sulfated side chains of aggrecan. Both rat chondrocyte and human mesenchymal stem cell PCMs possess many unused binding sites for aggrecan, showing a 2.5x increase in PCM thickness from ∼7 to ∼18 μm when provided exogenous aggrecan. Yet, full extension of the PCM occurs well below aggrecan saturation. Hence, cells equipped with hyaluronan-rich PCM can in principle manipulate surface accessibility or sequestration of molecules by tuning the bottlebrush proteoglycan content to alter PCM porosity and the number of electrostatic binding sites.
Collapse
Affiliation(s)
- Patrick S Chang
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Louis T McLane
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - Ruth Fogg
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Jan Scrimgeour
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia; Department of Physics, Clarkson University, Potsdam, New York
| | - Johnna S Temenoff
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia; W.H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Anna Granqvist
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Jennifer E Curtis
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia.
| |
Collapse
|
8
|
Abstract
In this mini review, we will provide a brief introduction focusing on the current applications of single plasmonic nanoparticle-based sensors using DFM, including the detection of molecules, the real-time monitoring of chemical/electrochemical reactions and the imaging of living cells.
Collapse
Affiliation(s)
- Tao Xie
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P.R. China
| | - Chao Jing
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P.R. China
- Physik-Department E20 Technische Universität München
| | - Yi-Tao Long
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P.R. China
| |
Collapse
|
9
|
Peng Y, Xiong B, Peng L, Li H, He Y, Yeung ES. Recent advances in optical imaging with anisotropic plasmonic nanoparticles. Anal Chem 2014; 87:200-15. [PMID: 25375954 DOI: 10.1021/ac504061p] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yinhe Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University , Changsha, Hunan 410082, P. R. China
| | | | | | | | | | | |
Collapse
|