1
|
Mukherjee AG, Gopalakrishnan AV. Anti-sperm Antibodies as an Increasing Threat to Male Fertility: Immunological Insights, Diagnostic and Therapeutic Strategies. Reprod Sci 2024; 31:3303-3322. [PMID: 38831152 DOI: 10.1007/s43032-024-01610-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
It is a fact that sperm possess antigenic properties. Substantial scientific research suggests that specific antibodies that attach to sperm antigens can induce infertility in both humans and other species. Antisperm antibodies (ASA) represent a significant etiology of infertility in humans, leading to immunoinfertility. The association between ASA and infertility is multifaceted. The observation of sperm agglutination, although not conclusive for the diagnosis of immunological infertility, may suggest the presence of ASA. Nevertheless, ASA may also manifest in the lack of any sperm agglutination. Managing ASA from an andrological perspective depends on the underlying cause and the specific approaches healthcare professionals adopt. The precise etiology of male infertility resulting from ASA remains unclear. Current research has examined the impact of ASA and its prevalence among infertile males to understand the relationship between ASA and changes in semen parameters. However, the findings have been inconclusive. Numerous techniques have been documented for the management of immunoinfertility. This review examines the importance of ASA in the context of infertility, encompassing the postulated mechanisms underlying the development of ASA, the various assays employed for detecting them, and the available treatments.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
2
|
Rahimi A, Sharifi H, Li PCH. Cytosolic Calcium Measurement Utilizing a Single-Cell Biochip to Study the Effect of Curcumin and Resveratrol on a Single Glioma Cell. Methods Mol Biol 2023; 2689:13-25. [PMID: 37430043 DOI: 10.1007/978-1-0716-3323-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
A microfluidic method has been developed for real-time measurement of the effects of curcumin on the intracellular calcium concentration in a single glioma cell (U87-MG). This method is based on quantitative fluorescence measurement of intracellular calcium in a cell selected in a single-cell biochip. This biochip consists of three reservoirs, three channels, and a V-shaped cell retention structure. Because of the adherent nature of glioma cells, a single cell can adhere within the aforementioned V-shaped structure. The single-cell calcium measurement will minimize cell damage caused by conventional cell calcium assay methods. Previous studies have shown that curcumin increased cytosolic calcium in glioma cells using the fluorescent dye: Fluo-4. So in this study, the effects of 5 μM and 10 μM solutions of curcumin on the increases of cytosolic calcium in a single glioma cell have been measured. Moreover, the effects of 100 μM and 200 μM of resveratrol are measured. At the final stage of the experiments, ionomycin was used to increase the intracellular calcium to the highest possible level due to dye saturation. It has been demonstrated that microfluidic cell calcium measurement is a real-time cytosolic assay that requires small quantities of reagent, which will have potential uses for drug discovery.
Collapse
Affiliation(s)
- Abolfazl Rahimi
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Hamide Sharifi
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Paul C H Li
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada.
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
3
|
Cai J, Cao YB, Leung ELH. Detection of Single Non-small Cell Lung Cancer Cell Multidrug Resistance with Single-Cell Bioanalyzer. Methods Mol Biol 2023; 2689:1-11. [PMID: 37430042 DOI: 10.1007/978-1-0716-3323-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Non-small cell lung cancer (NSCLC) is one of the leading causes of cancer death in the world. Despite the development of various lung cancer treatment methods, including surgery, radiation therapy, endocrine therapy, immunotherapy, and gene therapy, chemotherapy remains the most common approach for treating cancer. The risk of tumors acquiring resistance to chemotherapy remains a significant hurdle to the use of this approach for the successful treatment of various types of cancer. The majority of cancer-related deaths are related to metastasis. Circulating tumor cells (CTCs) are cells that have been detached from the primary tumor or have metastasized and entered the circulation. CTCs can cause metastases in various organs by reaching them through the bloodstream. The CTCs exist in peripheral blood as single cells or as oligoclonal clusters of tumor cells along with platelets and lymphocytes. The detection of CTCs is an important component of liquid biopsy which aids in the diagnosis, treatment, and prognosis of cancer. Here, we describe a method for extracting CTCs from the tumor of patients and using the microfluidic single-cell technique to study the inhibition of multidrug resistance due to drug efflux on a single cancer cell, to propose novel methods that can provide clinicians with more appropriate choices in their diagnostic and treatment approaches.
Collapse
Affiliation(s)
- Jun Cai
- Faculty of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, China
| | - Ya-Bing Cao
- Department of Oncology, Kiang Wu Hospital, Macau, SAR, China
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Science, University of Macau, Macau, SAR, China.
- MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau, SAR, China.
| |
Collapse
|
4
|
Wang H, Zhang R, Yang D, Wang X. Discrimination of Multidrug Resistance in Cancer Cells Achieved Using Single-Cell Analysis. Methods Mol Biol 2023; 2689:95-106. [PMID: 37430049 DOI: 10.1007/978-1-0716-3323-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The biophysical signatures of single cells, such as multidrug resistance (MDR), may easily change during their various disease states. Therefore, there is an ever-growing need for advanced methods to study and analyze the response of cancer cells to therapeutic intervention. To determine the cancer cells and responses to various cancer therapies, from a cell mortality perspective, we report a label-free and real-time method to monitor the in situ responses of ovarian cancer cells using a single-cell bioanalyzer (SCB). The SCB instrument was used to detect different ovarian cancer cells, such as NCI/ADR-RES cells, which are multidrug resistant (MDR), and non-MDR OVCAR-8 cells. The discrimination of ovarian cells has been achieved at the single-cell level by measuring drug accumulation quantitatively in real time, in which the accumulation is high in non-MDR single cells without drug efflux but is low in MDR single cells which are not efflux-free. The SCB was constructed as an inverted microscope for optical imaging and fluorescent measurement of a single cell that was retained in a microfluidic chip. The single ovarian cancer cell retained in the chip offered sufficient fluorescent signals for the SCB to measure the accumulation of daunorubicin (DNR) in the single cell in the absence of cyclosporine A (CsA). The same cell allows us to detect the enhanced drug accumulation due to MDR modulation in the presence of CsA, which is the MDR inhibitor. The measurement of drug accumulation in a cell was achieved after it was captured in the chip for one hour, with the correction of background interference. The detection of accumulation enhancement due to MDR modulation by CsA was determined in terms of either the accumulation rate or enhanced concentration of DNR in the single cell (same cell, p < 0.01). It showed that with the effectiveness of efflux blocking by CsA, the intracellular DNR concentration in a single cell increased by threefold against its same cell control. This single-cell bioanalyzer instrument has the ability to discriminate MDR in different ovarian cells due to drug efflux in them by eliminating the interference of background fluorescence and by using the same cell control.
Collapse
Affiliation(s)
- Haiyan Wang
- Department of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, Shanxi, China.
| | - Runxuan Zhang
- Department of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, Shanxi, China
| | - Di Yang
- Department of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, Shanxi, China
| | - Xin Wang
- Department of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, Shanxi, China
| |
Collapse
|
5
|
Sharifi Noghabi H, Ahmed AQ, Li PCH. Intracellular Calcium Increases Due to Curcumin Measured Using a Single-Cell Biochip. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1888967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Hamideh Sharifi Noghabi
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abdul Q. Ahmed
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Paul C. H. Li
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
6
|
A novel protein biochip screening serum anti-sperm antibody expression and natural pregnancy rate in a follow-up study in Chinese infertility. Biosci Rep 2021; 40:221951. [PMID: 31985014 PMCID: PMC7012658 DOI: 10.1042/bsr20191769] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 01/06/2020] [Accepted: 01/24/2020] [Indexed: 01/17/2023] Open
Abstract
Production of anti-sperm antibody (ASA) often suffers from autoimmune reaction against sperms in human infertility. The antibodies are measured in both blood and seminal plasma of males. Here, we reported a simple protein biochip methodology that takes advantage of a functionalized self-assembled monolayer modified by N-hydroxysuccinimide (NHS) and enables identification of anti-sperm antibody in Chinese male infertility. To validate this biochip platform, we immobilized purified sperm protein on the biochip surface and tested a variety of parameters in quality controls for the protein assay, respectively. Then, we analyzed serum samples from 368 patients with infertility and 116 healthy donors by means of this biochip simultaneously. We found that positive rate of serum ASA was 20.92% (77/368) in the cases and 1.72% (2/116) in the controls, respectively. Furthermore, we further corroborated the biochip assay in comparison with ELISA method. We found that both methods were compatible for the detection of serum ASA in the patients. In addition, a follow-up study for natural conception in ASA-positive and ASA-negative patients was conducted. The result showed a significant correlation between serum ASA expression and natural pregnancy rate 6.5% in ASA-positive patients while 18.9% in ASA-negative patients, indicating the potential roles of ASA in naturally reproductive processes.
Collapse
|
7
|
Chen P, Li S, Guo Y, Zeng X, Liu BF. A review on microfluidics manipulation of the extracellular chemical microenvironment and its emerging application to cell analysis. Anal Chim Acta 2020; 1125:94-113. [PMID: 32674786 DOI: 10.1016/j.aca.2020.05.065] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/22/2022]
Abstract
Spatiotemporal manipulation of extracellular chemical environments with simultaneous monitoring of cellular responses plays an essential role in exploring fundamental biological processes and expands our understanding of underlying mechanisms. Despite the rapid progress and promising successes in manipulation strategies, many challenges remain due to the small size of cells and the rapid diffusion of chemical molecules. Fortunately, emerging microfluidic technology has become a powerful approach for precisely controlling the extracellular chemical microenvironment, which benefits from its integration capacity, automation, and high-throughput capability, as well as its high resolution down to submicron. Here, we summarize recent advances in microfluidics manipulation of the extracellular chemical microenvironment, including the following aspects: i) Spatial manipulation of chemical microenvironments realized by convection flow-, diffusion-, and droplet-based microfluidics, and surface chemical modification; ii) Temporal manipulation of chemical microenvironments enabled by flow switching/shifting, moving/flowing cells across laminar flows, integrated microvalves/pumps, and droplet manipulation; iii) Spatiotemporal manipulation of chemical microenvironments implemented by a coupling strategy and open-space microfluidics; and iv) High-throughput manipulation of chemical microenvironments. Finally, we briefly present typical applications of the above-mentioned technical advances in cell-based analyses including cell migration, cell signaling, cell differentiation, multicellular analysis, and drug screening. We further discuss the future improvement of microfluidics manipulation of extracellular chemical microenvironments to fulfill the needs of biological and biomedical research and applications.
Collapse
Affiliation(s)
- Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shunji Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yiran Guo
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xuemei Zeng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
8
|
Tavakoli H, Zhou W, Ma L, Perez S, Ibarra A, Xu F, Zhan S, Li X. Recent advances in microfluidic platforms for single-cell analysis in cancer biology, diagnosis and therapy. Trends Analyt Chem 2019; 117:13-26. [PMID: 32831435 PMCID: PMC7434086 DOI: 10.1016/j.trac.2019.05.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Understanding molecular, cellular, genetic and functional heterogeneity of tumors at the single-cell level has become a major challenge for cancer research. The microfluidic technique has emerged as an important tool that offers advantages in analyzing single-cells with the capability to integrate time-consuming and labour-intensive experimental procedures such as single-cell capture into a single microdevice at ease and in a high-throughput fashion. Single-cell manipulation and analysis can be implemented within a multi-functional microfluidic device for various applications in cancer research. Here, we present recent advances of microfluidic devices for single-cell analysis pertaining to cancer biology, diagnostics, and therapeutics. We first concisely introduce various microfluidic platforms used for single-cell analysis, followed with different microfluidic techniques for single-cell manipulation. Then, we highlight their various applications in cancer research, with an emphasis on cancer biology, diagnosis, and therapy. Current limitations and prospective trends of microfluidic single-cell analysis are discussed at the end.
Collapse
Affiliation(s)
- Hamed Tavakoli
- College of Environmental Science and Engineering, Nankai
University, Tianjin 300071, People’s Republic of China
- Department of Chemistry and Biochemistry, University of
Texas at El Paso, 500 West University Ave, El Paso, TX 79968, USA
| | - Wan Zhou
- Department of Chemistry and Biochemistry, University of
Texas at El Paso, 500 West University Ave, El Paso, TX 79968, USA
| | - Lei Ma
- Department of Chemistry and Biochemistry, University of
Texas at El Paso, 500 West University Ave, El Paso, TX 79968, USA
| | - Stefani Perez
- Biomedical Engineering, Border Biomedical Research Center,
Environmental Science & Engineering, University of Texas at El Paso, 500 West
University Ave, El Paso, TX 79968, USA
| | - Andrea Ibarra
- Biomedical Engineering, Border Biomedical Research Center,
Environmental Science & Engineering, University of Texas at El Paso, 500 West
University Ave, El Paso, TX 79968, USA
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center,
Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of
China
| | - Sihui Zhan
- College of Environmental Science and Engineering, Nankai
University, Tianjin 300071, People’s Republic of China
| | - XiuJun Li
- College of Environmental Science and Engineering, Nankai
University, Tianjin 300071, People’s Republic of China
- Department of Chemistry and Biochemistry, University of
Texas at El Paso, 500 West University Ave, El Paso, TX 79968, USA
- Biomedical Engineering, Border Biomedical Research Center,
Environmental Science & Engineering, University of Texas at El Paso, 500 West
University Ave, El Paso, TX 79968, USA
| |
Collapse
|
9
|
Sharifi Noghabi H, Soo M, Khamenehfar A, Li PC. Dielectrophoretic trapping of single leukemic cells using the conventional and compact optical measurement systems. Electrophoresis 2019; 40:1478-1485. [DOI: 10.1002/elps.201800451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/25/2019] [Accepted: 01/26/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Hamideh Sharifi Noghabi
- Department of chemistrySimon Fraser University Burnaby British Columbia Canada
- Department of chemistryFaculty of SciencesFerdowsi University of Mashhad Mashhad Iran
| | - Mandy Soo
- Department of chemistrySimon Fraser University Burnaby British Columbia Canada
| | - Avid Khamenehfar
- Department of chemistrySimon Fraser University Burnaby British Columbia Canada
| | - Paul C.H. Li
- Department of chemistrySimon Fraser University Burnaby British Columbia Canada
| |
Collapse
|
10
|
Yang Y, Le Gac S, Terstappen LWMM, Rho HS. Parallel probing of drug uptake of single cancer cells on a microfluidic device. Electrophoresis 2017; 39:548-556. [DOI: 10.1002/elps.201700351] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/07/2017] [Accepted: 11/20/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Yoonsun Yang
- Medical Cell BioPhysics Group; MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente; The Netherlands
| | - Séverine Le Gac
- Applied Microfluidics for BioEngineering Research Group; MESA+ Institute for Nanotechnology, MIRA Institute for Biomedical Engineering and Technical Medicine; University of Twente; The Netherlands
| | - Leon WMM Terstappen
- Medical Cell BioPhysics Group; MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente; The Netherlands
| | - Hoon Suk Rho
- Applied Microfluidics for BioEngineering Research Group; MESA+ Institute for Nanotechnology, MIRA Institute for Biomedical Engineering and Technical Medicine; University of Twente; The Netherlands
| |
Collapse
|
11
|
Hansen CE, Lam WA. Clinical Implications of Single-Cell Microfluidic Devices for Hematological Disorders. Anal Chem 2017; 89:11881-11892. [PMID: 28942646 DOI: 10.1021/acs.analchem.7b01013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Single-cell microfluidic devices are poised to substantially impact the hematology field by providing a high-throughput and rapid device to analyze disease-mediated biophysical cellular changes in the clinical setting in order to diagnose patients and monitor disease prognosis. In this Feature, we cover recent advances of single-cell microfluidic devices for studying and diagnosing hematological dysfunctions and the clinical impact made possible by these advances.
Collapse
Affiliation(s)
- Caroline E Hansen
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children's Healthcare of Atlanta/Emory University School of Medicine , Atlanta, Georgia 30322, United States.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University , Atlanta, Georgia 30332, United States.,School of Chemistry and Biochemistry, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Wilbur A Lam
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children's Healthcare of Atlanta/Emory University School of Medicine , Atlanta, Georgia 30322, United States.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University , Atlanta, Georgia 30332, United States.,School of Chemistry and Biochemistry, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| |
Collapse
|
12
|
Ye L, Huang NL, Du YX, Schneider M, Du WD. Succinyl-β-cyclodextrin modified gold biochip improved seroimmunological detection sensitivity for Lyme disease. Anal Chim Acta 2017; 953:48-56. [DOI: 10.1016/j.aca.2016.11.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/11/2016] [Accepted: 11/29/2016] [Indexed: 10/20/2022]
|
13
|
Khamenehfar A, Gandhi MK, Chen Y, Hogge DE, Li PCH. Dielectrophoretic Microfluidic Chip Enables Single-Cell Measurements for Multidrug Resistance in Heterogeneous Acute Myeloid Leukemia Patient Samples. Anal Chem 2016; 88:5680-8. [PMID: 27149245 DOI: 10.1021/acs.analchem.5b04446] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The front-line treatment for adult acute myeloid leukemia (AML) is anthracycline-based combination chemotherapy. However, treatment outcomes remain suboptimal with relapses frequently observed. Among the mechanisms of treatment failure is multidrug resistance (MDR) mediated by the ABCB1, ABCC1, and ABCG2 drug-efflux transporters. Although genetic and phenotypic heterogeneity between leukemic blast cells is a well-recognized phenomenon, there remains minimal data on differences in MDR activity at the individual cell level. Specifically, functional assays that can distinguish the variability in MDR activity between individual leukemic blasts are lacking. Here, we outline a new dielectrophoretic (DEP) chip-based assay. This assay permits measurement of drug accumulation in single cells, termed same-single-cell analysis in the accumulation mode (SASCA-A). Initially, the assay was optimized in pretherapy samples from 20 adults with AML whose leukemic blasts had MDR activity against the anthracyline daunorubicin (DNR) tested using multiple MDR inhibitors. Parameters tested were initial drug accumulation, time to achieve signal saturation, fold-increase of DNR accumulation with MDR inhibition, ease of cell trapping, and ease of maintaining the trapped cells stationary. This enabled categorization into leukemic blast cells with MDR activity (MDR(+)) and leukemic blast cells without MDR activity (MDR(-ve)). Leukemic blasts could also be distinguished from benign white blood cells (notably these also lacked MDR activity). MDR(-ve) blasts were observed to be enriched in samples taken from patients who went on to enter complete remission (CR), whereas MDR(+) blasts were frequently observed in patients who failed to achieve CR following front-line chemotherapy. However, pronounced variability in functional MDR activity between leukemic blasts was observed, with MDR(+) cells not infrequently seen in some patients that went on to achieve CR. Next, we tested MDR activity in two paired AML patient samples. Pretherapy samples taken from patients that achieved CR to front-line chemotherapy were compared with samples taken at time of subsequent relapse. MDR(+) cells were frequently observed in leukemic blast cells in both pretherapy and relapsed samples, consistent with MDR as a mechanism of relapse in these patients. We demonstrate the ability of a new DEP microfluidic chip-based assay to identify heterogeneity in MDR activity in leukemic blasts. The test provides a platform for future studies to characterize the mechanistic basis for heterogeneity in MDR activity at the individual cell level.
Collapse
Affiliation(s)
| | - Maher K Gandhi
- The University of Queensland , Diamantina Institute, 37 Kent Street, Woolloongabba, Queensland, Australia
| | | | - Donna E Hogge
- Terry Fox Laboratory, BC Cancer Agency , 675 West 10th Avenue, Vancouver, British Columbia, Canada
| | | |
Collapse
|
14
|
Khamenehfar A, Beischlag TV, Russell PJ, Ling MTP, Nelson C, Li PCH. Label-free isolation of a prostate cancer cell among blood cells and the single-cell measurement of drug accumulation using an integrated microfluidic chip. BIOMICROFLUIDICS 2015; 9:064104. [PMID: 26594265 PMCID: PMC4644147 DOI: 10.1063/1.4934715] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/14/2015] [Indexed: 05/12/2023]
Abstract
Circulating tumor cells (CTCs) are found in the blood of patients with cancer. Although these cells are rare, they can provide useful information for chemotherapy. However, isolation of these rare cells from blood is technically challenging because they are small in numbers. An integrated microfluidic chip, dubbed CTC chip, was designed and fabricated for conducting tumor cell isolation. As CTCs usually show multidrug resistance (MDR), the effect of MDR inhibitors on chemotherapeutic drug accumulation in the isolated single tumor cell is measured. As a model of CTC isolation, human prostate cancer cells were mixed with mouse blood cells and the label-free isolation of the tumor cells was conducted based on cell size difference. The major advantages of the CTC chip are the ability for fast cell isolation, followed by multiple rounds of single-cell measurements, suggesting a potential assay for detecting the drug responses based on the liquid biopsy of cancer patients.
Collapse
Affiliation(s)
- A Khamenehfar
- Department of Chemistry, Simon Fraser University , Burnaby, British Columbia V5A 1S6, Canada
| | - T V Beischlag
- Faculty of Health Sciences, Simon Fraser University , Burnaby, British Columbia V5A1S6, Canada
| | - P J Russell
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, Department Faculty of Health, Queensland University of Technology , Princess Alexandra Hospital, Translational Research Institute, Brisbane, Australia
| | - M T P Ling
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, Department Faculty of Health, Queensland University of Technology , Princess Alexandra Hospital, Translational Research Institute, Brisbane, Australia
| | - C Nelson
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, Department Faculty of Health, Queensland University of Technology , Princess Alexandra Hospital, Translational Research Institute, Brisbane, Australia
| | - P C H Li
- Department of Chemistry, Simon Fraser University , Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|