1
|
Liu C, Li P, Yan X, Yang L, Liu P, Wang Q. Design of a dual Ir-Eu tag for fluorescent visualization and ICP-MS quantification of SIRPα and its host cells. Anal Bioanal Chem 2024; 416:2691-2697. [PMID: 38133669 DOI: 10.1007/s00216-023-05108-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
With the expansion of ICP-MS application into the field of bioanalysis, there is an urgent need for novel element tags today. Here, we report the design of a dual-element Ir-Eu tag, opening the door to simultaneous fluorescent imaging and ICP-MS quantification. The ratio of 153Eu/193Ir may serve as a precision control of the labeling process, allowing internal validation of the quantitative results obtained. As for SIRPα and its host cell analysis exemplified here, the Ir-Eu tag demonstrated superior figures of ICP-MS quantification with the LOD (3σ) down to 0.5 (153Eu) and 1.1 (193Ir) pM SIRPα and 220 (153Eu) and 830 (193Ir) RAW264.7 cells more than 130 times more sensitive compared with the LOD (3σ) of 65.2 pM SIRPα at 612 nm using fluorometry. Not limited to these demonstrations, we believe that the design ideas of the dual Ir-Eu tags should be applicable to various cases of bioanalysis when dual optical profiling and ICP-MS quantification are indispensable.
Collapse
Affiliation(s)
- Chunlan Liu
- Department of Chemistry & the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- College of Chemistry and Bioengineering, Yichun University, Yichun, 336000, China
| | - Pengtao Li
- Department of Hepatobiliary Surgery & Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen Key Laboratory of Translational Medical of Digestive System Tumor, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Xiaowen Yan
- Department of Chemistry & the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Limin Yang
- Department of Chemistry & the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Pingguo Liu
- Department of Hepatobiliary Surgery & Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen Key Laboratory of Translational Medical of Digestive System Tumor, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China.
| | - Qiuquan Wang
- Department of Chemistry & the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
2
|
Abstract
The mercapturic acid pathway is a major route for the biotransformation of xenobiotic and endobiotic electrophilic compounds and their metabolites. Mercapturic acids (N-acetyl-l-cysteine S-conjugates) are formed by the sequential action of the glutathione transferases, γ-glutamyltransferases, dipeptidases, and cysteine S-conjugate N-acetyltransferase to yield glutathione S-conjugates, l-cysteinylglycine S-conjugates, l-cysteine S-conjugates, and mercapturic acids; these metabolites constitute a "mercapturomic" profile. Aminoacylases catalyze the hydrolysis of mercapturic acids to form cysteine S-conjugates. Several renal transport systems facilitate the urinary elimination of mercapturic acids; urinary mercapturic acids may serve as biomarkers for exposure to chemicals. Although mercapturic acid formation and elimination is a detoxication reaction, l-cysteine S-conjugates may undergo bioactivation by cysteine S-conjugate β-lyase. Moreover, some l-cysteine S-conjugates, particularly l-cysteinyl-leukotrienes, exert significant pathophysiological effects. Finally, some enzymes of the mercapturic acid pathway are described as the so-called "moonlighting proteins," catalytic proteins that exert multiple biochemical or biophysical functions apart from catalysis.
Collapse
Affiliation(s)
- Patrick E Hanna
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - M W Anders
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
3
|
Liang Y, Liu Q, Zhou Y, Chen S, Yang L, Zhu M, Wang Q. Counting and Recognizing Single Bacterial Cells by a Lanthanide-Encoding Inductively Coupled Plasma Mass Spectrometric Approach. Anal Chem 2019; 91:8341-8349. [DOI: 10.1021/acs.analchem.9b01130] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yong Liang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Qian Liu
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yang Zhou
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Shi Chen
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Limin Yang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Min Zhu
- PerkinElmer Instruments (Shanghai) Co. Ltd., Shanghai 201203, China
| | - Qiuquan Wang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- State Key Lab of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
4
|
Xie Y, Dahlin JL, Oakley AJ, Casarotto MG, Board PG, Baell JB. Reviewing Hit Discovery Literature for Difficult Targets: Glutathione Transferase Omega-1 as an Example. J Med Chem 2018; 61:7448-7470. [PMID: 29652143 DOI: 10.1021/acs.jmedchem.8b00318] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Early stage drug discovery reporting on relatively new or difficult targets is often associated with insufficient hit triage. Literature reviews of such targets seldom delve into the detail required to critically analyze the associated screening hits reported. Here we take the enzyme glutathione transferase omega-1 (GSTO1-1) as an example of a relatively difficult target and review the associated literature involving small-molecule inhibitors. As part of this process we deliberately pay closer-than-usual attention to assay interference and hit quality aspects. We believe this Perspective will be a useful guide for future development of GSTO1-1 inhibitors, as well serving as a template for future review formats of new or difficult targets.
Collapse
Affiliation(s)
- Yiyue Xie
- Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , Victoria 3052 , Australia
| | - Jayme L Dahlin
- Department of Pathology , Brigham and Women's Hospital , Boston , Massachusetts 02135 , United States
| | - Aaron J Oakley
- School of Chemistry , University of Wollongong , Wollongong , NSW 2522 , Australia
| | - Marco G Casarotto
- John Curtin School of Medical Research , Australian National University , Canberra , ACT 2600 , Australia
| | - Philip G Board
- John Curtin School of Medical Research , Australian National University , Canberra , ACT 2600 , Australia
| | - Jonathan B Baell
- Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , Victoria 3052 , Australia.,School of Pharmaceutical Sciences , Nanjing Tech University , Nanjing , 211816 , People's Republic of China
| |
Collapse
|
5
|
Liu Z, Li X, Xiao G, Chen B, He M, Hu B. Application of inductively coupled plasma mass spectrometry in the quantitative analysis of biomolecules with exogenous tags: A review. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.05.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Liang Y, Jiang X, Yuan R, Zhou Y, Ji C, Yang L, Chen H, Wang Q. Metabolism-Based Click-Mediated Platform for Specific Imaging and Quantification of Cell Surface Sialic Acids. Anal Chem 2016; 89:538-543. [DOI: 10.1021/acs.analchem.6b04141] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yong Liang
- Department of Chemistry & the MOE Key Lab of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xin Jiang
- School
of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China
| | - Rong Yuan
- Department of Chemistry & the MOE Key Lab of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yang Zhou
- Department of Chemistry & the MOE Key Lab of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Caixia Ji
- Department of Chemistry & the MOE Key Lab of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Limin Yang
- Department of Chemistry & the MOE Key Lab of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Haifeng Chen
- School
of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China
| | - Qiuquan Wang
- Department of Chemistry & the MOE Key Lab of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- State
Key Lab of Marine Environmental Science, Xiamen University, Xiamen 361005, China
| |
Collapse
|
7
|
Structure, function and disease relevance of Omega-class glutathione transferases. Arch Toxicol 2016; 90:1049-67. [PMID: 26993125 DOI: 10.1007/s00204-016-1691-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/10/2016] [Indexed: 12/13/2022]
Abstract
The Omega-class cytosolic glutathione transferases (GSTs) have distinct structural and functional attributes that allow them to perform novel roles unrelated to the functions of other GSTs. Mammalian GSTO1-1 has been found to play a previously unappreciated role in the glutathionylation cycle that is emerging as significant mechanism regulating protein function. GSTO1-1-catalyzed glutathionylation or deglutathionylation of a key signaling protein may explain the requirement for catalytically active GSTO1-1 in LPS-stimulated pro-inflammatory signaling through the TLR4 receptor. The observation that ML175 a specific GSTO1-1 inhibitor can block LPS-stimulated inflammatory signaling has opened a new avenue for the development of novel anti-inflammatory drugs that could be useful in the treatment of toxic shock and other inflammatory disorders. The role of GSTO2-2 remains unclear. As a dehydroascorbate reductase, it could contribute to the maintenance of cellular redox balance and it is interesting to note that the GSTO2 N142D polymorphism has been associated with multiple diseases including Alzheimer's disease, Parkinson's disease, familial amyotrophic lateral sclerosis, chronic obstructive pulmonary disease, age-related cataract and breast cancer.
Collapse
|