1
|
Feldman TB, Yakovleva MA, Ostrovsky MA. Retinoids in lipofuscin granules from retinal pigment epithelium as biomarkers of the damaging effect of ionizing radiation. Exp Eye Res 2025:110270. [PMID: 39922526 DOI: 10.1016/j.exer.2025.110270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/05/2024] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Lipofuscin granules accumulate in the retinal pigment epithelium with age, especially in patients with visual diseases, including progressive age-related macular degeneration. Retinoids (bisretinoids and their oxidation products) are major sources of lipofuscin granule fluorescence. The aim of this work was to analyze the radiation-mediated oxidation of retinoids in lipofuscin granules obtained from the human cadaver eye retinal pigment epithelium. Fluorescent and chromatographic analyses of retinoids were performed before and after irradiation of lipofuscin granules with accelerated protons. The fluorescent properties of chloroform extracts from irradiated lipofuscin granules exhibited an increase in fluorescence intensity in the short-wavelength region of 555 nm. This change is associated with an increase in the quantity of retinoid oxidation cytotoxic products after accelerated proton exposure. The radiation-induced oxidation of retinoids caused a noticeable change in the fluorescent properties of retinoids allows us to consider this phenomenon as a potential opportunity for non-invasively assessment of the degree of radiation exposure and its relative biological effect in humans. Thus, this research proposes a new strategy for assessing the extent of radiation exposure to humans, which evaluates the effects of ionizing radiation on human eye tissues. This approach is based on the principles of the modern non-invasive method of fundus autofluorescence used in ophthalmology for the diagnosis of the retina and retinal pigment epithelium degenerative diseases.
Collapse
Affiliation(s)
- Tatiana B Feldman
- Department of Molecular Physiology, Biological Faculty, Lomonosov Moscow State University, Leninskiye Gory 1, Moscow, 119234, Russia; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow, 119334, Russia.
| | - Marina A Yakovleva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow, 119334, Russia
| | - Mikhail A Ostrovsky
- Department of Molecular Physiology, Biological Faculty, Lomonosov Moscow State University, Leninskiye Gory 1, Moscow, 119234, Russia; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow, 119334, Russia
| |
Collapse
|
2
|
Lunegova DA, Gvozdev DA, Senin II, Gudkova VR, Sidorenko SV, Tiulina VV, Shebardina NG, Yakovleva MA, Feldman TB, Ramonova AA, Moysenovich AM, Semenov AN, Zernii EY, Maksimov EG, Sluchanko NN, Kirpichnikov MP, Ostrovsky MA. Antioxidant properties of the soluble carotenoprotein AstaP and its feasibility for retinal protection against oxidative stress. FEBS J 2025; 292:355-372. [PMID: 39580658 DOI: 10.1111/febs.17335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/06/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
Photodamage to the outer segments of photoreceptor cells and their impaired utilization by retinal pigment epithelium (RPE) cells contribute to the development of age-related macular degeneration (AMD) leading to blindness. Degeneration of photoreceptor cells and RPE cells is triggered by reactive oxygen species (ROS) produced by photochemical reactions involving bisretinoids, by-products of the visual cycle, which accumulate in photoreceptor discs and lipofuscin granules of RPE. Carotenoids, natural antioxidants with high potential efficacy against a wide range of ROS, may protect against the cytotoxic properties of lipofuscin. To solve the problem of high hydrophobicity of carotenoids and increase their bioaccessibility, specialized proteins can ensure their targeted delivery to the affected tissues. In this study, we present new capabilities of the recombinant water-soluble protein AstaP from Coelastrella astaxanthina Ki-4 (Scenedesmaceae) for protein-mediated carotenoid delivery and demonstrate how zeaxanthin delivery suppresses oxidative stress in a lipofuscin-enriched model of photoreceptor and pigment epithelium cells. AstaP in complex with zeaxanthin can effectively scavenge various ROS (singlet oxygen, free radical cations, hydrogen peroxide) previously reported to be generated in AMD. In addition, we explore the potential of optimizing the structure of AstaP to enhance its thermal stability and resistance to proteolytic activity in the ocular media. This optimization aims to maximize the prevention of retinal degenerative changes in AMD.
Collapse
Affiliation(s)
- Daria A Lunegova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Russia
- Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Danil A Gvozdev
- Faculty of Biology, M.V. Lomonosov Moscow State University, Russia
| | - Ivan I Senin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | | | | | - Veronika V Tiulina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | - Natalia G Shebardina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | - Marina A Yakovleva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana B Feldman
- Faculty of Biology, M.V. Lomonosov Moscow State University, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Alla A Ramonova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Russia
| | | | - Alexey N Semenov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Russia
| | - Evgeni Yu Zernii
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | | | - Nikolai N Sluchanko
- Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | | | - Mikhail A Ostrovsky
- Faculty of Biology, M.V. Lomonosov Moscow State University, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Serejnikova NB, Trofimova NN, Yakovleva MA, Dontsov AE, Zak PP, Ostrovsky MA. Blue Light-Induced Accelerated Formation of Melanolipofuscin-Like Organelles in Japanese Quail RPE Cells: An Electron Microscopic Study. Invest Ophthalmol Vis Sci 2024; 65:31. [PMID: 39297806 PMCID: PMC11421679 DOI: 10.1167/iovs.65.11.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/02/2024] [Indexed: 09/26/2024] Open
Abstract
Purpose The retinal pigment epithelium (RPE) is a monolayer of epithelial cells essential for photoreceptor function and viability. Quail Coturnix japonica is a convenient experimental animal model for the study of age and pathological retina processes to an accelerated time regime. The three main types of pigment granules present in the RPE are melanin-containing melanosomes, lipofuscin-containing lipofuscin granules, and mixed melanolipofuscin granules containing both melanin and lipofuscin. The purpose of this work was to study the process of melanolipofuscinogenesis during aging and under light exposure. Methods We examined melanolipofuscin granules in "macular" areas, the area of the retina containing oxycarotenoids, as a function of the macula in humans, of the quail retina by transmission electron microscopy in young, middle-aged, and old birds, and in middle-aged birds irradiated with blue LED light (450 nm, 4 J/cm2). Results It has been shown that during photo-oxidative stress caused by the action of blue light on the quail eye, active fusion of melanosomes and lipofuscin granules occurs with formation of various types, including giant, mixed melanolipofuscin-like granules. Increased accumulation of melanolipofuscin-like granules was also observed in non-irradiated old birds. Conclusions It is assumed that the decrease in the number of melanosomes in the RPE during aging and photo-oxidative stress is associated with their fusion with lipofuscin granules and subsequent degradation of melanin by reactive oxygen species formed in melanolipofuscin-like granules. The disappearance of melanin deprives the RPE cells of light-filtering and antioxidant protection, and significantly increases the risk of their oxidative stress.
Collapse
Affiliation(s)
| | - Natalia N. Trofimova
- N. N. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Marina A. Yakovleva
- N. N. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Alexander E. Dontsov
- N. N. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Pavel P. Zak
- N. N. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail A. Ostrovsky
- N. N. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
4
|
Bourauel L, Vaisband M, von der Emde L, Bermond K, Tarau IS, Heintzmann R, Holz FG, Curcio CA, Hasenauer J, Ach T. Spectral Analysis of Human Retinal Pigment Epithelium Cells in Healthy and AMD Eyes. Invest Ophthalmol Vis Sci 2024; 65:10. [PMID: 38170540 PMCID: PMC10768704 DOI: 10.1167/iovs.65.1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Purpose Retinal pigment epithelium (RPE) cells show strong autofluorescence (AF). Here, we characterize the AF spectra of individual RPE cells in healthy eyes and those affected by age-related macular degeneration (AMD) and investigate associations between AF spectral response and the number of intracellular AF granules per cell. Methods RPE-Bruch's membrane flatmounts of 22 human donor eyes, including seven AMD-affected eyes (early AMD, three; geographic atrophy, one; neovascular, three) and 15 unaffected macula (<51 years, eight; >80 years, seven), were imaged at the fovea, perifovea, and near-periphery using confocal AF microscopy (excitation 488 nm), and emission spectra were recorded (500-710 nm). RPE cells were manually segmented with computer assistance and stratified by disease status, and emission spectra were analyzed using cubic spline transforms. Intracellular granules were manually counted and classified. Linear mixed models were used to investigate associations between spectra and the number of intracellular granules. Results Spectra of 5549 RPE cells were recorded. The spectra of RPE cells in healthy eyes showed similar emission curves that peaked at 580 nm for fovea and perifovea and at 575 and 580 nm for near-periphery. RPE spectral curves in AMD eyes differed significantly, being blue shifted by 10 nm toward shorter wavelengths. No significant association coefficients were found between wavelengths and granule counts. Conclusions This large series of RPE cell emission spectra at precisely predefined retinal locations showed a hypsochromic spectral shift in AMD. Combining different microscopy techniques, our work has identified cellular RPE spectral AF and subcellular granule properties that will inform future in vivo investigations using single-cell imaging.
Collapse
Affiliation(s)
- Leonie Bourauel
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Marc Vaisband
- Institute of Life & Medical Sciences, University of Bonn, Bonn, Germany
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute Laboratory for Immunological and Molecular Cancer Research, Paracelsus Medical University, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | | | - Katharina Bermond
- Department of Ophthalmology, Ludwigshafen Hospital, Ludwigshafen, Germany
| | - Ioana Sandra Tarau
- Department of Ophthalmology, Asklepios Klinik Nord - Heidberg, Hamburg, Germany
| | - Rainer Heintzmann
- Leibniz Institute of Photonic Technology, Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Jena, Germany
| | - Frank G. Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Christine A. Curcio
- Department of Ophthalmology, University of Alabama at Birmingham, Alabama, Alabama, United States
| | - Jan Hasenauer
- Institute of Life & Medical Sciences, University of Bonn, Bonn, Germany
| | - Thomas Ach
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| |
Collapse
|
5
|
Różanowska MB. Lipofuscin, Its Origin, Properties, and Contribution to Retinal Fluorescence as a Potential Biomarker of Oxidative Damage to the Retina. Antioxidants (Basel) 2023; 12:2111. [PMID: 38136230 PMCID: PMC10740933 DOI: 10.3390/antiox12122111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Lipofuscin accumulates with age as intracellular fluorescent granules originating from incomplete lysosomal digestion of phagocytosed and autophagocytosed material. The purpose of this review is to provide an update on the current understanding of the role of oxidative stress and/or lysosomal dysfunction in lipofuscin accumulation and its consequences, particularly for retinal pigment epithelium (RPE). Next, the fluorescence of lipofuscin, spectral changes induced by oxidation, and its contribution to retinal fluorescence are discussed. This is followed by reviewing recent developments in fluorescence imaging of the retina and the current evidence on the prognostic value of retinal fluorescence for the progression of age-related macular degeneration (AMD), the major blinding disease affecting elderly people in developed countries. The evidence of lipofuscin oxidation in vivo and the evidence of increased oxidative damage in AMD retina ex vivo lead to the conclusion that imaging of spectral characteristics of lipofuscin fluorescence may serve as a useful biomarker of oxidative damage, which can be helpful in assessing the efficacy of potential antioxidant therapies in retinal degenerations associated with accumulation of lipofuscin and increased oxidative stress. Finally, amendments to currently used fluorescence imaging instruments are suggested to be more sensitive and specific for imaging spectral characteristics of lipofuscin fluorescence.
Collapse
Affiliation(s)
- Małgorzata B. Różanowska
- School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, Wales, UK;
- Cardiff Institute for Tissue Engineering and Repair (CITER), Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, Wales, UK
| |
Collapse
|
6
|
Feldman T, Yakovleva M, Utina D, Ostrovsky M. Short-Term and Long-Term Effects after Exposure to Ionizing Radiation and Visible Light on Retina and Retinal Pigment Epithelium of Mouse Eye. Int J Mol Sci 2023; 24:17049. [PMID: 38069372 PMCID: PMC10707529 DOI: 10.3390/ijms242317049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
A comparative in vivo study of the effects of ionizing radiation (accelerated protons) and visible light (400-700 nm) on the retina and retinal pigment epithelium (RPE) of the mouse eye was carried out. Using the methods of fluorescence spectroscopy and high-performance liquid chromatography (HPLC), we analyzed the relative composition of retinoids in chloroform extracts obtained from the retinas and RPEs immediately after exposure of animals to various types of radiation and 4.5 months after they were exposed and maintained under standard conditions throughout the period. The fluorescent properties of chloroform extracts were shown to change upon exposure to various types of radiation. This fact indicates the accumulation of retinoid oxidation and degradation products in the retina and RPE. The data from fluorescence and HPLC analyses of retinoids indicate that when exposed to ionizing radiation, retinoid oxidation processes similar to photooxidation occur. Both ionizing radiation and high-intensity visible light have been shown to be characterized by long-term effects. The action of any type of radiation is assumed to activate the mechanism of enhanced reactive oxygen species production, resulting in a long-term damaging effect.
Collapse
Affiliation(s)
- Tatiana Feldman
- Department of Biology, Lomonosov Moscow State University, Leninskiye Gory 1, Moscow 119234, Russia;
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow 119334, Russia;
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow 119334, Russia
| | - Marina Yakovleva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow 119334, Russia;
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow 119334, Russia
| | - Dina Utina
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna 141980, Russia;
| | - Mikhail Ostrovsky
- Department of Biology, Lomonosov Moscow State University, Leninskiye Gory 1, Moscow 119234, Russia;
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow 119334, Russia;
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow 119334, Russia
| |
Collapse
|
7
|
Protein-Mediated Carotenoid Delivery Suppresses the Photoinducible Oxidation of Lipofuscin in Retinal Pigment Epithelial Cells. Antioxidants (Basel) 2023; 12:antiox12020413. [PMID: 36829973 PMCID: PMC9952040 DOI: 10.3390/antiox12020413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Lipofuscin of retinal pigment epithelium (RPE) cells is a complex heterogeneous system of chromophores which accumulates as granules during the cell's lifespan. Lipofuscin serves as a source of various cytotoxic effects linked with oxidative stress. Several age-related eye diseases such as macular degeneration of the retina, as well as some severe inherited eye pathologies, are accompanied by a significant increase in lipofuscin granule concentration. The accumulation of carotenoids in the RPE could provide an effective antioxidant protection against lipofuscin cytotoxic manifestations. Given the highly lipophilic nature of carotenoids, their targeted delivery to the vulnerable tissues can potentially be assisted by special proteins. In this study, we demonstrate how protein-mediated delivery of zeaxanthin using water-soluble Bombyx mori carotenoid-binding protein (BmCBP-ZEA) suppresses the photoinducible oxidative stress in RPE cells caused by irradiation of lipofuscin with intense white light. We implemented fluorescence lifetime imaging of the RPE cell culture ARPE-19 fed with lipofuscin granules and then irradiated by white light with and without the addition of BmCBP-ZEA. We demonstrate that after irradiation the mean fluorescence lifetime of lipofuscin significantly increases, while the presence of BmCBP-ZEA at 200 nM concentration suppresses the increase in the average lifetime of lipofuscin fluorescence, indicating an approx. 35% inhibition of the oxidative stress. This phenomenon serves as indirect yet important evidence of the efficiency of the protein-mediated carotenoid delivery into pigment epithelium cells.
Collapse
|
8
|
Feldman T, Ostrovskiy D, Yakovleva M, Dontsov A, Borzenok S, Ostrovsky M. Lipofuscin-Mediated Photic Stress Induces a Dark Toxic Effect on ARPE-19 Cells. Int J Mol Sci 2022; 23:12234. [PMID: 36293088 PMCID: PMC9602730 DOI: 10.3390/ijms232012234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 12/25/2023] Open
Abstract
Lipofuscin granules from retinal pigment epithelium (RPE) cells contain bisretinoid fluorophores, which are photosensitizers and are phototoxic to cells. In the presence of oxygen, bisretinoids are oxidized to form various products, containing aldehydes and ketones, which are also potentially cytotoxic. In a prior study, we identified that bisretinoid oxidation and degradation products have both hydrophilic and amphiphilic properties, allowing their diffusion through the lipofuscin granule membrane into the RPE cell cytoplasm, and are thiobarbituric acid (TBA)-active. The purpose of the present study was to determine if these products exhibit a toxic effect to the RPE cell also in the absence of light. The experiments were performed using the lipofuscin-fed ARPE-19 cell culture. The RPE cell viability analysis was performed with the use of flow cytofluorimetry and laser scanning confocal microscopy. The results obtained indicated that the cell viability of the lipofuscin-fed ARPE-19 sample was clearly reduced not immediately after visible light irradiation for 18 h, but after 4 days maintaining in the dark. Consequently, we could conclude that bisretinoid oxidation products have a damaging effect on the RPE cell in the dark and can be considered as an aggravating factor in age-related macular degeneration progression.
Collapse
Affiliation(s)
- Tatiana Feldman
- Department of Biology, Lomonosov Moscow State University, Leninskiye Gory 1, 119234 Moscow, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, 119334 Moscow, Russia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
| | - Dmitriy Ostrovskiy
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
- Sv. Fyodorov Eye Microsurgery Complex, 59a Beskudnikovsky bld., 127486 Moscow, Russia
| | - Marina Yakovleva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, 119334 Moscow, Russia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
| | - Alexander Dontsov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, 119334 Moscow, Russia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
| | - Sergey Borzenok
- Sv. Fyodorov Eye Microsurgery Complex, 59a Beskudnikovsky bld., 127486 Moscow, Russia
| | - Mikhail Ostrovsky
- Department of Biology, Lomonosov Moscow State University, Leninskiye Gory 1, 119234 Moscow, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, 119334 Moscow, Russia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
| |
Collapse
|
9
|
Feldman TB, Dontsov AE, Yakovleva MA, Ostrovsky MA. Photobiology of lipofuscin granules in the retinal pigment epithelium cells of the eye: norm, pathology, age. Biophys Rev 2022; 14:1051-1065. [PMID: 36124271 PMCID: PMC9481861 DOI: 10.1007/s12551-022-00989-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/26/2022] [Indexed: 01/10/2023] Open
Abstract
Lipofuscin granules (LGs) are accumulated in the retinal pigment epithelium (RPE) cells. The progressive LG accumulation can somehow lead to pathology and accelerate the aging process. The review examines composition, spectral properties and photoactivity of LGs isolated from the human cadaver eyes. By use of atomic force microscopy and near-field microscopy, we have revealed the fluorescent heterogeneity of LGs. We have discovered the generation of reactive oxygen species by LGs, and found that LGs and melanolipofuscin granules are capable of photoinduced oxidation of lipids. It was shown that A2E, as the main fluorophore (bisretinoid) of LGs, is much less active as an oxidation photosensitizer than other fluorophores (bisretinoids) of LGs. Photooxidized products of bisretinoids pose a much greater danger to the cell than non-oxidized one. Our studies of the fluorescent properties of LGs and their fluorophores (bisretinoids) showed for the first time that their spectral characteristics change (shift to the short-wavelength region) in pathology and after exposure to ionizing radiation. By recording the fluorescence spectra and fluorescence decay kinetics of oxidized products of LG fluorophores, it is possible to improve the methods of early diagnosis of degenerative diseases. Lipofuscin ("aging pigment") is not an inert "slag". The photoactivity of LGs can pose a significant danger to the RPE cells. Fluorescence characteristics of LGs are a tool to detect early stages of degeneration in the retina and RPE.
Collapse
Affiliation(s)
- T. B. Feldman
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - A. E. Dontsov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - M. A. Yakovleva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - M. A. Ostrovsky
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
10
|
Kotnala A, Senthilkumari S, Wu G, Stewart TG, Curcio CA, Halder N, Singh SB, Kumar A, Velpandian T. Retinal Pigment Epithelium in Human Donor Eyes Contains Higher Levels of Bisretinoids Including A2E in Periphery than Macula. Invest Ophthalmol Vis Sci 2022; 63:6. [PMID: 35671050 PMCID: PMC9187938 DOI: 10.1167/iovs.63.6.6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose With age, human retinal pigment epithelium (RPE) accumulates bisretinoid fluorophores that may impact cellular function and contribute to age-related macular degeneration (AMD). Bisretinoids are comprised of a central pyridinium, dihydropyridinium, or cyclohexadiene ring. The pyridinium bisretinoid A2E has been extensively studied, and its quantity in the macula has been questioned. Age-changes and distributions of other bisretinoids are not well characterized. We measured levels of three bisretinoids and oxidized A2E in macula and periphery in human donor eyes of different ages. Methods Eyes (N = 139 donors, 61 women and 78 men, aged 40–80 years) were dissected into 8 mm diameter macular and temporal periphery punches. Using liquid chromatography – electrospray ionization – mass spectrometry (LC-ESI-MS) and an authentic synthesized standard, we quantified A2E (ng). Using LC-ESI-MS and a 50-eye-extract of A2E, we semiquantified A2E and 3 other compounds (eye extract equivalent units [EEEUs): A2-glycerophosphoethanolamine (A2GPE), dihydropyridine phosphatidyl ethanolamine (A2DHPE), and monofuranA2E (MFA2E). Results A2E quantities in ng and EEEUs were highly correlated (r = 0.97, P < 0.001). From 262 eyes, 5 to 9-fold higher levels were observed in the peripheral retina than in the macula for all assayed compounds. A2E, A2DHPE, and MFA2E increased with age, whereas A2GPE remained unaffected. No significant right-left or male-female differences were detected. Conclusions Significantly higher levels were observed in the periphery than in the macula for all assayed compounds signifying biologic differences between these regions. Levels of oxidized A2E parallel native A2E and not the distribution of retinal illuminance. Data will assist with the interpretion of clinical trial outcomes of agents targeting bisretinoid-related pathways.
Collapse
Affiliation(s)
- Ankita Kotnala
- Ocular Pharmacology & Pharmacy Division, All India Institute of Medical Sciences, New Delhi, India
| | - Srinivasan Senthilkumari
- Department of Ocular Pharmacology, Aravind Medical Research Foundation (AMRF), Dr. G. Venkataswamy Eye Research Institute, #1, Anna Nagar, Madurai -20, Tamilnadu, India
| | - Gong Wu
- Department of Biostatics, Vanderbilt University Medical Centre, Nashville, Tennessee, United States
| | - Thomas G Stewart
- Department of Biostatics, Vanderbilt University Medical Centre, Nashville, Tennessee, United States
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Nabanita Halder
- Ocular Pharmacology & Pharmacy Division, All India Institute of Medical Sciences, New Delhi, India
| | | | - Atul Kumar
- Department of Ophthalmology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Thirumurthy Velpandian
- Ocular Pharmacology & Pharmacy Division, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
11
|
Yakovleva MA, Radchenko AS, Kostyukov AA, Chagovets VV, Kononikhin AS, Khubetsova MK, Borzenok SA, Kuzmin VA, Nikolaev EN, Feldman TB, Ostrovsky MA. Comparative Analysis of the Physicochemical Characteristics of Fluorophore Groups of Lipofuscin Granules from Cells of Retinal Pigmental Epithhelium of Human Cadader Eyes in the Norm and in a Pathology. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2022. [DOI: 10.1134/s199079312201033x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Lipofuscin Granule Bisretinoid Oxidation in the Human Retinal Pigment Epithelium forms Cytotoxic Carbonyls. Int J Mol Sci 2021; 23:ijms23010222. [PMID: 35008647 PMCID: PMC8745408 DOI: 10.3390/ijms23010222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 01/06/2023] Open
Abstract
Age-related macular degeneration (AMD) is the primary cause of central blindness among the elderly. AMD is associated with progressive accumulation of lipofuscin granules in retinal pigment epithelium (RPE) cells. Lipofuscin contains bisretinoid fluorophores, which are photosensitizers and are phototoxic to RPE and neuroretinal cells. In the presence of oxygen, bisretinoids are also oxidized, forming various products, consisting primarily of aldehydes and ketones, which are also potentially cytotoxic. In a prior study, we identified that in AMD, bisretinoid oxidation products are increased in RPE lipofuscin granules. The purpose of the present study was to determine if these products were toxic to cellular structures. The physicochemical characteristics of bisretinoid oxidation products in lipofuscin, which were obtained from healthy donor eyes, were studied. Raman spectroscopy and time-of-flight secondary ion mass spectrometry (ToF–SIMS) analysis identified the presence of free-state aldehydes and ketones within the lipofuscin granules. Together, fluorescence spectroscopy, high-performance liquid chromatography, and mass spectrometry revealed that bisretinoid oxidation products have both hydrophilic and amphiphilic properties, allowing their diffusion through lipofuscin granule membrane into the RPE cell cytoplasm. These products contain cytotoxic carbonyls, which can modify cellular proteins and lipids. Therefore, bisretinoid oxidation products are a likely aggravating factor in the pathogenesis of AMD.
Collapse
|
13
|
Yakovleva MA, Feldman TB, Lyakhova KN, Utina DM, Kolesnikova IA, Vinogradova YV, Molokanov AG, Ostrovsky MA. Ionized Radiation-Mediated Retinoid Oxidation in the Retina and Retinal Pigment Epithelium of the Murine Eye. Radiat Res 2021; 197:270-279. [PMID: 34879150 DOI: 10.1667/rade-21-00069.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 10/15/2021] [Indexed: 11/03/2022]
Abstract
The present study evaluated the effects of proton and gamma-ray ionizing radiation on the mouse eye. The aim of this work was to analyze radiation-mediated retinoid oxidation in the retina and retinal pigment epithelium (RPE). The findings from this analysis can be used to develop a noninvasive method for rapid assessment of the effects of ionizing radiation. Comparative fluorescence and chromatographic analyses of retinoids before and after irradiations were performed. The fluorescent properties of chloroform extracts from irradiated mouse retina and RPE exhibited an increase in fluorescence intensity in the short-wave region of the spectrum (λ < 550 nm). This change is due to increased retinal and RPE retinoid oxidation and degradation products after radiation exposure. Comparative analyses of radiation effects demonstrated that the effect of proton exposure on the retina and RPE was higher than that of gamma-ray exposure. The present study revealed a new approach to assessing the level of radiation exposure in ocular tissues.
Collapse
Affiliation(s)
- Marina A Yakovleva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana B Feldman
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia.,Department of Molecular Physiology, Biological Faculty, Moscow State University, Moscow, Russia
| | - Kristina N Lyakhova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Dubna, Moscow region, Russia
| | - Dina M Utina
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Dubna, Moscow region, Russia
| | - Inna A Kolesnikova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Dubna, Moscow region, Russia
| | - Yuliya V Vinogradova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Dubna, Moscow region, Russia
| | - Alexander G Molokanov
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Dubna, Moscow region, Russia
| | - Mikhail A Ostrovsky
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia.,Department of Molecular Physiology, Biological Faculty, Moscow State University, Moscow, Russia.,Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Dubna, Moscow region, Russia
| |
Collapse
|
14
|
Schultz R, Schwanengel L, Klemm M, Meller D, Hammer M. Spectral fundus autofluorescence peak emission wavelength in ageing and AMD. Acta Ophthalmol 2021; 100:e1223-e1231. [PMID: 34850573 DOI: 10.1111/aos.15070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/26/2021] [Accepted: 11/19/2021] [Indexed: 01/18/2023]
Abstract
PURPOSE To investigate the spectral characteristics of fundus autofluorescence (FAF) in AMD patients and controls. METHODS Fundus autofluorescence spectral characteristics was described by the peak emission wavelength (PEW) of the spectra. Peak emission wavelength (PEW) was derived from the ratio of FAF recordings in two spectral channels at 500-560 nm and 560-720 nm by fluorescence lifetime imaging ophthalmoscopy. The ratio of FAF intensity in both channels was related to PEW by a calibration procedure. Peak emission wavelength (PEW) measurements were done in 44 young (mean age: 24.0 ± 3.8 years) and 18 elderly (mean age: 67.5 ± 10.2 years) healthy subjects as well as 63 patients with AMD (mean age: 74.0 ± 7.3 years) in each pixel of a 30° imaging field. The values were averaged over the central area, the inner and the outer ring of the ETDRS grid. RESULTS There was no significant difference between PEW in young and elderly controls. However, PEW was significantly shorter in AMD patients (ETDRS grid centre: 571 ± 26 nm versus 599 ± 17 nm for elderly controls, inner ring: 596 ± 17 nm versus 611 ± 11 nm, outer ring: 602 ± 16 nm versus 614 ± 11 nm). After a mean follow-up time of 50.8 ± 10.8 months, the PEW in the patients decreased significantly by 9 ± 19 nm in the inner ring of the grid. Patients, showing progression to atrophic AMD in the follow up, had significantly (p ≤ 0.018) shorter PEW at baseline than non-progressing patients. CONCLUSIONS Peak emission wavelength (PEW) is related to AMD pathology and might be a diagnostic marker in AMD. Possibly, a short PEW can predict progression to retinal and/or pigment epithelium atrophy.
Collapse
Affiliation(s)
- Rowena Schultz
- Department of Ophthalmology University Hospital Jena Jena Germany
| | | | - Matthias Klemm
- Institute of Biomedical Engineering and Informatics Technical Univ. Ilmenau Ilmenau Germany
| | - Daniel Meller
- Department of Ophthalmology University Hospital Jena Jena Germany
| | - Martin Hammer
- Department of Ophthalmology University Hospital Jena Jena Germany
- Center for Medical Optics and Photonics Univ. of Jena Jena Germany
| |
Collapse
|
15
|
Abstract
To describe fundus autofluorescence (FAF) patterns in premature infants and to determine whether FAF increases gradually with increasing post-gestational age. This was a cross-sectional, observational and descriptive case series. FAF images were obtained from patients screened for Retinopathy of Prematurity. The presence of the following hypo-autofluorescence areas/structures was graded and ranked: macular pigment (foveal centre), optic nerve head, peripapillary vessels/vascular arcade (PP/VA), and equatorial vessels (EqV). Ranks were attributed to the number of structures visualized from the posterior pole towards the periphery. The rank of FAF could then be analysed by Spearman’s correlation against age. Additionally, patients were divided by age into group 1 (< 40 weeks of corrected gestational age (WCGA)) and group 2 (> 40 WCGA). Differences between groups were tested with the Mann–Whitney U test. Thirteen patients were analysed. The mean WCGA at examination was 47.85 weeks. Spearman’s correlation showed a strong positive correlation (r = 0.714) (P = 0.006) of FAF and WCGA. The Mann–Whitney U test revealed that the PP/VA and EqV were significantly more visible at > 40 WCGA than at < 40 WCGA (8.0 [P = 0.016] and 7.5 [P = 0.03], respectively). Patterns of FAF are described for the first time in premature infants. FAF increases gradually with age and centrifugally from the posterior pole towards the equator in premature infants.
Collapse
|
16
|
Yakovleva MA, Radchenko AS, Kostyukov AA, Arbukhanova PM, Borzenok SA, Kuzmin VA, Feldman TB, Ostrovsky MA. Reconstruction of the Fluorescence Spectra of Bisretinoids and the Products of Their Photooxidation and Photodegradation from the Retinal Pigment Epithelium of the Human Eye. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2020. [DOI: 10.1134/s199079312003029x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Yakovleva MA, Radchenko AS, Feldman TB, Kostyukov AA, Arbukhanova PM, Borzenok SA, Kuzmin VA, Ostrovsky MA. Fluorescence characteristics of lipofuscin fluorophores from human retinal pigment epithelium. Photochem Photobiol Sci 2020; 19:920-930. [PMID: 32441276 DOI: 10.1039/c9pp00406h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Lipofuscin granules accumulate in the retinal pigment epithelium (RPE) with age, especially in patients with visual diseases, including progressive age-related macular degeneration (AMD). Bisretinoids and their photooxidation and photodegradation products are major sources of lipofuscin granule fluorescence. The present study focused on examining the fluorescence decay characteristics of bisretinoid photooxidation and photodegradation products to evaluate the connection between fluorescence lifetime and spectral characteristics of target fluorophore groups. The primary objective of the study was to apply experimental spectral analysis results of lipofuscin granule fluorescence properties to interpretation of fluorescence lifetime imaging ophthalmoscopy data. Fluorescence analysis of the lipofuscin granule fluorophores in RPE collected from cadaver eyes was performed. The fluorescence lifetimes were measured by picosecond-resolved time correlated single photon counting technique. A global analytical method was applied to analyze data sets. The photooxidation and photodegradation products of bisretinoids exhibited a longer fluorescence lifetime (average value approximately 6 ns) and a shorter wavelength maximum (530-580 nm). Further, these products significantly contributed (more than 30%), to total fluorescence compared to the other fluorophores in lipofuscin granules. Thus, the contribution of oxidized lipofuscin bisretinoids to autofluorescence decay kinetics is an important characteristic for fluorescence lifetime imaging microscopy data analysis. The higher average fluorescence lifetime in AMD eyes was likely due to the higher abundance of oxidized bisretinoids compared with non-oxidized bisretinoids. Because higher level of oxidized bisretinoids is indicative of pathological processes in the retina and RPE, the present findings have the potential to improve fluorescence lifetime imaging approaches for early diagnosis of degenerative processes in the retina and RPE.
Collapse
Affiliation(s)
- Marina A Yakovleva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st. 4, 119334, Moscow, Russia
| | - Alexandra Sh Radchenko
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st. 4, 119334, Moscow, Russia
| | - Tatiana B Feldman
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st. 4, 119334, Moscow, Russia.,Department of Molecular Physiology, Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russia
| | - Alexey A Kostyukov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st. 4, 119334, Moscow, Russia
| | - Patimat M Arbukhanova
- Sv. Fyodorov Eye Microsurgery Complex, Beskudnikovsky bld. 59a, 127486, Moscow, Russia
| | - Sergey A Borzenok
- Sv. Fyodorov Eye Microsurgery Complex, Beskudnikovsky bld. 59a, 127486, Moscow, Russia
| | - Vladimir A Kuzmin
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st. 4, 119334, Moscow, Russia
| | - Mikhail A Ostrovsky
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st. 4, 119334, Moscow, Russia.,Department of Molecular Physiology, Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russia
| |
Collapse
|
18
|
Yakovleva MA, Lyakhova KN, Utina DM, Vinogradova UV, Kolesnikova IA, Feldman TB, Ostrovsky MA. Changes in the Composition and Fluorescent Properties of Bisretinoids in the Retina and the Retinal Pigment Epithelium of the Mouse Eye under Exposure to Ionizing Radiation. BIOL BULL+ 2020. [DOI: 10.1134/s1062359019120094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
19
|
Pyon WS, Gray DT, Barnes CA. An Alternative to Dye-Based Approaches to Remove Background Autofluorescence From Primate Brain Tissue. Front Neuroanat 2019; 13:73. [PMID: 31379520 PMCID: PMC6657503 DOI: 10.3389/fnana.2019.00073] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/04/2019] [Indexed: 12/21/2022] Open
Abstract
Brain tissue contains autofluorescing elements that potentially impede accurate identification of neurons when visualized with fluorescent microscopy. Age-related accumulation of molecules with autofluorescent properties, such as lipofuscin, can possess spectral profiles that invade the typical emission range of fluorophores commonly utilized in fluorescent microscopy. The traditional method for accounting for this native fluorescence is to apply lipophilic dyes that are able to sequester these unwanted signals. While effective, such dyes can present a range of problems including the obstruction of fluorescent probe emissions. The present study utilizes aged primate midbrain tissue stained for tyrosine hydroxylase and calbindin to investigate an image processing approach for removing autofluorescence utilizing spectral imaging and linear unmixing. This technique is then compared against the traditional, dye-based autofluorescence sequestration method using Sudan Black B (SBB). Spectral imaging and linear unmixing yielded significantly higher cell numbers than SBB treatment. This finding suggests that computational approaches for removing autofluorescence in neural tissue are both viable and preferential to dye-based approaches for estimation of cell body numbers.
Collapse
Affiliation(s)
- Wonn S. Pyon
- Evelyn F. McKnight Brain Institute, The University of Arizona, Tucson, AZ, United States
- ARL Division of Neural Systems, Memory and Aging, The University of Arizona, Tucson, AZ, United States
| | - Daniel T. Gray
- Evelyn F. McKnight Brain Institute, The University of Arizona, Tucson, AZ, United States
- ARL Division of Neural Systems, Memory and Aging, The University of Arizona, Tucson, AZ, United States
| | - Carol A. Barnes
- Evelyn F. McKnight Brain Institute, The University of Arizona, Tucson, AZ, United States
- ARL Division of Neural Systems, Memory and Aging, The University of Arizona, Tucson, AZ, United States
- Department of Psychology, Neurology and Neuroscience, The University of Arizona, Tucson, AZ, United States
| |
Collapse
|
20
|
Moreno-García A, Kun A, Calero O, Medina M, Calero M. An Overview of the Role of Lipofuscin in Age-Related Neurodegeneration. Front Neurosci 2018; 12:464. [PMID: 30026686 PMCID: PMC6041410 DOI: 10.3389/fnins.2018.00464] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/18/2018] [Indexed: 12/21/2022] Open
Abstract
Despite aging being by far the greatest risk factor for highly prevalent neurodegenerative disorders, the molecular underpinnings of age-related brain changes are still not well understood, particularly the transition from normal healthy brain aging to neuropathological aging. Aging is an extremely complex, multifactorial process involving the simultaneous interplay of several processes operating at many levels of the functional organization. The buildup of potentially toxic protein aggregates and their spreading through various brain regions has been identified as a major contributor to these pathologies. One of the most striking morphologic changes in neurons during normal aging is the accumulation of lipofuscin (LF) aggregates, as well as, neuromelanin pigments. LF is an autofluorescent lipopigment formed by lipids, metals and misfolded proteins, which is especially abundant in nerve cells, cardiac muscle cells and skin. Within the Central Nervous System (CNS), LF accumulates as aggregates, delineating a specific senescence pattern in both physiological and pathological states, altering neuronal cytoskeleton and cellular trafficking and metabolism, and being associated with neuronal loss, and glial proliferation and activation. Traditionally, the accumulation of LF in the CNS has been considered a secondary consequence of the aging process, being a mere bystander of the pathological buildup associated with different neurodegenerative disorders. Here, we discuss recent evidence suggesting the possibility that LF aggregates may have an active role in neurodegeneration. We argue that LF is a relevant effector of aging that represents a risk factor or driver for neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Alejandra Kun
- Biochemistry Section, Science School, Universidad de la República, Montevideo, Uruguay
- Protein and Nucleic Acids Department, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Olga Calero
- Chronic Disease Programme-CROSADIS, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Miguel Medina
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
- Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Miguel Calero
- Chronic Disease Programme-CROSADIS, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
- Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| |
Collapse
|
21
|
Spectral analysis of fundus autofluorescence pattern as a tool to detect early stages of degeneration in the retina and retinal pigment epithelium. Eye (Lond) 2018; 32:1440-1448. [PMID: 29786089 DOI: 10.1038/s41433-018-0109-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 02/27/2018] [Accepted: 03/30/2018] [Indexed: 01/14/2023] Open
Abstract
PURPOSE The aim of this work is the determination of quantitative diagnostic criteria based on the spectral characteristics of fundus autofluorescence to detect early stages of degeneration in the retina and retinal pigment epithelium (RPE). METHODS RPE cell suspension samples were obtained from the cadaver eyes with and without signs of age-related macular degeneration (AMD). Fluorescence analysis at an excitation wavelength of 488 nm was performed. The fluorescence lifetimes of lipofuscin-granule fluorophores were measured by counting time-correlated photon method. RESULTS Comparative analysis of fluorescence spectra of RPE cell suspensions from the cadaver eyes with and without signs of AMD showed a significant difference in fluorescence intensity at 530-580 nm in response to fluorescence excitation at 488 nm. It was notably higher in eyes with visual pathology than in normal eyes regardless of the age of the eye donor. Measurements of fluorescence lifetimes of lipofuscin fluorophores showed that the contribution of photooxidation and photodegradation products of bisretinoids to the total fluorescence at 530-580 nm of RPE cell suspensions was greater in eyes with visual pathology than in normal eyes. CONCLUSION Because photooxidation and photodegradation products of bisretinoids are markers of photodestructive processes, which can cause RPE cell death and initiate degenerative processes in the retina, quantitative determination of increases in these bisretinoid products in lipofuscin granules may be used to establish quantitative diagnostic criteria for degenerative processes in the retina and RPE.
Collapse
|
22
|
Yakovleva MA, Feldman TB, Arbukhanova PM, Borzenok SA, Kuzmin VA, Ostrovsky MA. The fluorescence lifetime of lipofuscin granule fluorophores contained in the retinal pigment epithelium cells from human cadaver eyes in normal state and in the case of visualized pathology. DOKL BIOCHEM BIOPHYS 2017; 474:239-243. [PMID: 28726093 DOI: 10.1134/s1607672917030231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Indexed: 11/23/2022]
Abstract
A comparative analysis of fluorescence lifetime of lipofuscin granule fluorophores contained in the retinal pigment epithelium cells from human cadaver eyes in normal state and in the case of visualized pathology was carried out. Measurements of fluorescence lifetimes of bis-retinoids and their photooxidation and photodegradation products were carried out using the method of counting time-correlated photons. Comparative analysis showed that, in the case of visualized pathology, the contribution of photooxidation and photodegradation products of bis-retinoids to the total fluorescence of the retinal pigment epithelium cell suspension increases in comparison with the norm.
Collapse
Affiliation(s)
- M A Yakovleva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia.
| | - T B Feldman
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia.,Biological Faculty, Moscow State University, Moscow, 119991, Russia
| | - P M Arbukhanova
- Fedorov Eye Microsurgery Research and Technology Complex, Ministry of Health of the Russian Federation, Moscow, 127486, Russia
| | - S A Borzenok
- Fedorov Eye Microsurgery Research and Technology Complex, Ministry of Health of the Russian Federation, Moscow, 127486, Russia
| | - V A Kuzmin
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - M A Ostrovsky
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia.,Biological Faculty, Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
23
|
Panova IG, Yakovleva MA, Tatikolov AS, Kononikhin A, Feldman TB, Poltavtseva RA, Nikolaev E, Sukhikh GT, Ostrovsky MA. Lutein and its oxidized forms in eye structures throughout prenatal human development. Exp Eye Res 2017; 160:31-37. [DOI: 10.1016/j.exer.2017.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 04/22/2017] [Accepted: 04/22/2017] [Indexed: 10/19/2022]
|
24
|
Yakovleva MA, Feldman TB, Arbukhanova PM, Borzenok SA, Kuzmin VA, Ostrovsky MA. Estimation of fluorescence lifetime of lipofuscin fluorophores contained in lipofuscin granules of retinal pigment epithelium of human cadaver eyes without signs of pathology. DOKL BIOCHEM BIOPHYS 2017; 472:19-22. [DOI: 10.1134/s1607672917010069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Indexed: 11/23/2022]
|
25
|
HYPERSPECTRAL AUTOFLUORESCENCE IMAGING OF DRUSEN AND RETINAL PIGMENT EPITHELIUM IN DONOR EYES WITH AGE-RELATED MACULAR DEGENERATION. Retina 2017; 36 Suppl 1:S127-S136. [PMID: 28005671 DOI: 10.1097/iae.0000000000001325] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE To elucidate the molecular pathogenesis of age-related macular degeneration (AMD) and interpretation of fundus autofluorescence imaging, the authors identified spectral autofluorescence characteristics of drusen and retinal pigment epithelium (RPE) in donor eyes with AMD. METHODS Macular RPE/Bruch membrane flat mounts were prepared from 5 donor eyes with AMD. In 12 locations (1-3 per eye), hyperspectral autofluorescence images in 10-nm-wavelength steps were acquired at 2 excitation wavelengths (λex 436, 480 nm). A nonnegative tensor factorization algorithm was used to recover 5 abundant emission spectra and their corresponding spatial localizations. RESULTS At λex 436 nm, the authors consistently localized a novel spectrum (SDr) with a peak emission near 510 nm in drusen and sub-RPE deposits. Abundant emission spectra seen previously (S0 in Bruch membrane and S1, S2, and S3 in RPE lipofuscin/melanolipofuscin, respectively) also appeared in AMD eyes, with the same shapes and peak wavelengths as in normal tissue. Lipofuscin/melanolipofuscin spectra localizations in AMD eyes varied widely in their overlap with drusen, ranging from none to complete. CONCLUSION An emission spectrum peaking at ∼510 nm (λex 436 nm) appears to be sensitive and specific for drusen and sub-RPE deposits. One or more abundant spectra from RPE organelles exhibit characteristic relationships with drusen.
Collapse
|
26
|
Teussink MM, Lambertus S, de Mul FF, Rozanowska MB, Hoyng CB, Klevering BJ, Theelen T. Lipofuscin-associated photo-oxidative stress during fundus autofluorescence imaging. PLoS One 2017; 12:e0172635. [PMID: 28235055 PMCID: PMC5325292 DOI: 10.1371/journal.pone.0172635] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/07/2017] [Indexed: 11/24/2022] Open
Abstract
Purpose Current standards and guidelines aimed at preventing retinal phototoxicity during intentional exposures do not specifically evaluate the contribution of endogenous photosensitizers. However, certain retinal diseases are characterized by abnormal accumulations of potential photosensitizers such as lipofuscin bisretinoids in the retinal pigment epithelium (RPE). We sought to determine these contributions by a numerical assessment of in-vivo photo-oxidative stress during irradiation of RPE lipofuscin. Methods Based on the literature, we calculated the retinal exposure levels, optical filtering of incident radiation by the ocular lens, media, photoreceptors, and RPE melanin, light absorption by lipofuscin, and photochemical effects in the RPE in two situations: exposure to short-wavelength (λ = 488 nm) fundus autofluorescence (SW-AF) excitation light and exposure to indirect (diffuse) sunlight. Results In healthy persons at age 20, 40, and 60, respectively, the rate of oxygen photoconsumption by lipofuscin increases by 1.3, 1.7, and 2.4 fold during SW-AF-imaging as compared to diffuse sunlight. In patients with STGD1 below the age of 30, this rate was 3.3-fold higher compared to age-matched controls during either sunlight or SW-AF imaging. Conclusions Our results suggest that the RPE of patients with STGD1 is generally at increased risk of photo-oxidative stress, while exposure during SW-AF-imaging amplifies this risk. These theoretical results have not yet been verified with in-vivo data due to a lack of sufficiently sensitive in-vivo measurement techniques.
Collapse
Affiliation(s)
- Michel M. Teussink
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Stanley Lambertus
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Frits F. de Mul
- Department of Applied Physics, University of Twente, Enschede, the Netherlands
| | | | - Carel B. Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - B. Jeroen Klevering
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Thomas Theelen
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
- * E-mail:
| |
Collapse
|
27
|
Kaluzny J, Purta P, Poskin Z, Rogers JD, Fawzi AA. Ex Vivo Confocal Spectroscopy of Autofluorescence in Age-Related Macular Degeneration. PLoS One 2016; 11:e0162869. [PMID: 27631087 PMCID: PMC5024989 DOI: 10.1371/journal.pone.0162869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/30/2016] [Indexed: 11/24/2022] Open
Abstract
Purpose We investigated the autofluorescence (AF) signature of the microscopic features of retina with age-related macular degeneration (AMD) using 488 nm excitation. Methods The globes of four donors with AMD and four age-matched controls were embedded in paraffin and sectioned through the macula. Sections were excited using a 488 nm argon laser, and the AF emission was captured using a laser scanning confocal microscope (496–610 nm, 6 nm resolution). The data cubes were then analyzed to compare peak emission spectra between the AMD and the controls. Microscopic features, including individual lipofuscin and melanolipofuscin granules, Bruch’s Membrane, as well macroscopic features, were considered. Results Overall, the AMD eyes showed a trend of blue-shifted emission peaks compared with the controls. These differences were statistically significant when considering the emission of the combined RPE/Bruch’s Membrane across all the tissue cross-sections (p = 0.02). Conclusions The AF signatures of ex vivo AMD RPE/BrM show blue-shifted emission spectra (488 nm excitation) compared with the control tissue. The magnitude of these differences is small (~4 nm) and highlights the potential challenges of detecting these subtle spectral differences in vivo.
Collapse
Affiliation(s)
- Joel Kaluzny
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Patryk Purta
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Zach Poskin
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jeremy D Rogers
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Amani A Fawzi
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| |
Collapse
|
28
|
Yakovleva MA, Gulin AA, Feldman TB, Bel’skich YC, Arbukhanova PM, Astaf’ev AA, Nadtochenko VA, Borzenok SA, Ostrovsky MA. Time-of-flight secondary ion mass spectrometry to assess spatial distribution of A2E and its oxidized forms within lipofuscin granules isolated from human retinal pigment epithelium. Anal Bioanal Chem 2016; 408:7521-8. [DOI: 10.1007/s00216-016-9854-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/24/2016] [Accepted: 08/01/2016] [Indexed: 11/25/2022]
|
29
|
Pallitto P, Ablonczy Z, Jones EE, Drake RR, Koutalos Y, Crouch RK, Donello J, Herrmann J. A2E and lipofuscin distributions in macaque retinal pigment epithelium are similar to human. Photochem Photobiol Sci 2016. [PMID: 26223373 DOI: 10.1039/c5pp00170f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The accumulation of lipofuscin, an autofluorescent aging marker, in the retinal pigment epithelium (RPE) has been implicated in the development of age-related macular degeneration (AMD). Lipofuscin contains several visual cycle byproducts, most notably the bisretinoid N-retinylidene-N-retinylethanolamine (A2E). Previous studies with human donor eyes have shown a significant mismatch between lipofuscin autofluorescence (AF) and A2E distributions. The goal of the current project was to examine this relationship in a primate model with a retinal anatomy similar to that of humans. Ophthalmologically naive young (<10 years., N = 3) and old (>10 years., N = 4) Macaca fascicularis (macaque) eyes, were enucleated, dissected to yield RPE/choroid tissue, and flat-mounted on indium-tin-oxide-coated conductive slides. To compare the spatial distributions of lipofuscin and A2E, fluorescence and mass spectrometric imaging were carried out sequentially on the same samples. The distribution of lipofuscin fluorescence in the primate RPE reflected previously obtained human results, having the highest intensities in a perifoveal ring. Contrarily, A2E levels were consistently highest in the periphery, confirming a lack of correlation between the distributions of lipofuscin and A2E previously described in human donor eyes. We conclude that the mismatch between lipofuscin AF and A2E distributions is related to anatomical features specific to primates, such as the macula, and that this primate model has the potential to fill an important gap in current AMD research.
Collapse
Affiliation(s)
- Patrick Pallitto
- Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Adler L, Boyer NP, Anderson DM, Spraggins JM, Schey KL, Hanneken A, Ablonczy Z, Crouch RK, Koutalos Y. Determination of N-retinylidene-N-retinylethanolamine (A2E) levels in central and peripheral areas of human retinal pigment epithelium. Photochem Photobiol Sci 2016; 14:1983-90. [PMID: 26323192 DOI: 10.1039/c5pp00156k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The bis-retinoid N-retinylidene-N-retinylethanolamine (A2E) is one of the major components of lipofuscin, a fluorescent material that accumulates with age in the lysosomes of the retinal pigment epithelium (RPE) of the human eye. Lipofuscin, as well as A2E, exhibit a range of cytotoxic properties, which are thought to contribute to the pathogenesis of degenerative diseases of the retina such as Age-related Macular Degeneration. Consistent with such a pathogenic role, high levels of lipofuscin fluorescence are found in the central area of the human RPE, and decline toward the periphery. Recent reports have however suggested a surprising incongruence between the distributions of lipofuscin and A2E in the human RPE, with A2E levels being lowest in the central area and increasing toward the periphery. To appraise such a possibility, we have quantified the levels of A2E in the central and peripheral RPE areas of 10 eyes from 6 human donors (ages 75-91 years) with HPLC and UV/VIS spectroscopy. The levels of A2E in the central area were on average 3-6 times lower than in peripheral areas of the same eye. Furthermore, continuous accumulation of selected ions (CASI) imaging mass spectrometry showed the presence of A2E in the central RPE, and at lower intensities than in the periphery. We have therefore corroborated that in human RPE the levels of A2E are lower in the central area compared to the periphery. We conclude that the levels of A2E cannot by themselves provide an explanation for the higher lipofuscin fluorescence found in the central area of the human RPE.
Collapse
Affiliation(s)
- Leopold Adler
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA.
| | - Nicholas P Boyer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA.
| | - David M Anderson
- Mass Spectrometry Research Center, Vanderbilt School of Medicine, Nashville, TN, USA
| | - Jeffrey M Spraggins
- Mass Spectrometry Research Center, Vanderbilt School of Medicine, Nashville, TN, USA
| | - Kevin L Schey
- Mass Spectrometry Research Center, Vanderbilt School of Medicine, Nashville, TN, USA
| | - Anne Hanneken
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Zsolt Ablonczy
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA.
| | - Rosalie K Crouch
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA.
| | - Yiannis Koutalos
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|