1
|
Zhang DX, Wang MY, Lin WB, Qu S, Ji L, Xu C, Kan H, Dong K. Recent advances in emerging application of functional materials in sample pretreatment methods for liquid chromatography-mass spectrometry analysis of plant growth regulators: A mini-review. J Chromatogr A 2023; 1704:464130. [PMID: 37302252 DOI: 10.1016/j.chroma.2023.464130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/04/2023] [Accepted: 06/03/2023] [Indexed: 06/13/2023]
Abstract
Plant growth regulators (PGRs) are a class of small molecular compounds, which can remarkably affect the physiological process of plants. The complex plant matrix along with a wide polarity range and unstable chemical properties of PGRs hinder their trace analysis. In order to obtain a reliable and accurate result, a sample pretreatment process must be carried out, including eliminating the interference of the matrix effect and pre-concentrating the analytes. In recent years, the research of functional materials in sample pretreatment has experienced rapid growth. This review comprehensively overviews recent development in functional materials covering one-dimensional materials, two-dimensional materials, and three-dimensional materials applied in the pretreatment of PGRs before liquid chromatography-mass spectrometry (LC-MS) analysis. Besides, the advantages and limitations of the above functionalized enrichment materials are discussed, and their future trends have been prospected. The work could be helpful to bring new insights for researchers engaged in functional materials in sample pretreatment of PGRs based on LC-MS.
Collapse
Affiliation(s)
- Dong-Xue Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Ming-Yue Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Wen-Bo Lin
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Shuai Qu
- Biology Institute of Jilin province, 1244 Qianjin Street, Changchun 130012, Jilin, China
| | - Li Ji
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Chen Xu
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Hong Kan
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China.
| | - Kai Dong
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China.
| |
Collapse
|
2
|
Zhang X, Gao J, Wei T, Wu D, Shen J, Wei Y, Wang C. Polymer brush grafted immobilized metal ion affinity adsorbent based on polydopamine/polyethyleneimine-coated magnetic graphene oxide for selective enrichment of cytokinins in plants. Mikrochim Acta 2023; 190:191. [PMID: 37099040 DOI: 10.1007/s00604-023-05776-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/31/2023] [Indexed: 04/27/2023]
Abstract
An immobilized metal affinity (IMAC) adsorbent was prepared for selective enrichment of adenine type CKs, via grafting polymer chain pendant with iminodiacetic acid (IDA) from polydopamine (PDA)/polyethyleneimine (PEI)-coated magnetic graphene oxide (magGO) via surface-initiated-atom transfer radical polymerization (SI-ATRP). The prepared IMAC sorbent exhibited remarkable adsorption performances and good selectivity for adenine-type CKs and was utilized as a sorbent of magnetic solid-phase extraction (MSPE) for effective enrichment of four adenine-type CKs in bean sprouts. Under the optimized extraction conditions, an analytical method for four adenine type CKs in bean sprouts was established by combining the MSPE combined with ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The recoveries of the analytes were between 80.4 ± 1.9% and 114.6 ± 1.5% (n = 3). The limits of detection (LODs) range from 0.63 to 2.30 pg⋅mL-1. The relative standard deviations of intra-day and inter-day were less than 12.6%. The established method was successfully applied to the selective extraction and sensitive detection of trace adenine-type CKs in plant samples.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Chang'an District, Xi'an, 710127, China
| | - Jingnan Gao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Chang'an District, Xi'an, 710127, China
| | - Tong Wei
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Chang'an District, Xi'an, 710127, China
| | - Dan Wu
- Sunresin New Materials Co., Ltd., Xi'an, People's Republic of China
| | - Jiwei Shen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Chang'an District, Xi'an, 710127, China
| | - Yinmao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Chang'an District, Xi'an, 710127, China
| | - Chaozhan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Chang'an District, Xi'an, 710127, China.
| |
Collapse
|
3
|
Lu Q, Lin S, Ding Q, Zhang H, Tong P, Fang M, Zhang W, Zhang L. An agaric-like covalent organic framework composite for efficient extraction of trace cytokinins in plant samples. J Chromatogr A 2022; 1683:463524. [DOI: 10.1016/j.chroma.2022.463524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/31/2022] [Accepted: 09/18/2022] [Indexed: 10/31/2022]
|
4
|
Desire CT, Arrua RD, Mansour FR, Bon SAF, Hilder EF. Styrene-based polymerised high internal phase emulsions using monomers in the internal phase as co-surfactants for improved liquid chromatography. RSC Adv 2022; 12:9773-9785. [PMID: 35424961 PMCID: PMC8961205 DOI: 10.1039/d1ra07705h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/08/2022] [Indexed: 11/21/2022] Open
Abstract
Poly(styrene-co-divinylbenzene)-based monoliths were prepared from the polymerisation of water-in-monomer high internal phase emulsions, where the water-soluble monomers acrylamide (AAm) or poly(ethylene glycol) diacrylate (PEGDA) (M w 258) were also included in the 90 vol% internal phase. Both AAm and PEGDA were found to act as co-surfactants, resulting in the obtainment of monoliths with greater homogeneity in some cases. As a result these materials demonstrated significantly improved chromatographic performance for the separation of a standard mixture of proteins using reversed-phase liquid chromatography, in comparison to monoliths prepared with no internal phase monomer. In particular, the columns grafted with PEGDA were capable of separating a more complex mixture consisting of seven components. The inclusion of monomers in the internal phase also allowed for the functionalisation of the monolith's surface where the degree of polymerisation that occurred in the internal phase, which was governed by the monomer content in the internal phase and initiation location, determined whether polymeric chains or a hydrogel were grafted to the surface. A monolith grafted with AAm was also found to be capable of retaining polar analytes as a result of the increase in surface hydrophilicity.
Collapse
Affiliation(s)
- Christopher T Desire
- Australian Centre for Research on Separation Science (ACROSS), School of Physical Sciences, University of Tasmania Hobart Australia
- University of South Australia, STEM, Future Industries Institute SA 5000 Australia
| | - R Dario Arrua
- University of South Australia, STEM, Future Industries Institute SA 5000 Australia
| | - Fotouh R Mansour
- Department of Pharmaceutical Analytical Chemistry, Tanta University Tanta Egypt
| | - Stefan A F Bon
- Department of Chemistry, The University of Warwick Coventry CV4 7AL UK
| | - Emily F Hilder
- University of South Australia, STEM, Future Industries Institute SA 5000 Australia
| |
Collapse
|
5
|
Luo J, Jiang L, Liu C, Ruan G, Du F. Polyvinylpyrrolidone/Single-Walled Carbon Nanotubes Incorporated Polyhipe Monoliths Followed by HPLC for Determination of Tetracycline Antibiotics in Water Samples. J WATER CHEM TECHNO+ 2022. [DOI: 10.3103/s1063455x21060114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Aptamer functionalized and reduced graphene oxide hybridized porous polymers SPE coupled with LC-MS for adsorption and detection of human α-thrombin. Anal Bioanal Chem 2021; 414:1553-1561. [PMID: 34779902 DOI: 10.1007/s00216-021-03776-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/19/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
In this study, reduced graphene oxide (rGO) hybridized high internal phase emulsions were developed and polymerized as porous carriers for aptamer (5'/5AmMC6/-AGT CCG TGG TAG GGC AGG TTG GGG TGA CT-3') modification to enrich human α-thrombin from serum. The structure and properties of the materials were confirmed by scanning electron microscope (SEM), Fourier transform infrared spectroscope (FT-IR), and X-ray photoelectron spectra (XPS). The adsorption ability and selectivity were studied and the thrombin was detected with liquid chromatography-mass spectrometry (LC-MS). The adsorption of thrombin onto the sorbent was achieved within 30 min and the desorption was realized using 5.0 mL of acetonitrile/water (80/20, v/v). The thrombin was quantified by LC-MS according to its characteristic peptide sequence of ELLESYIDGR.
Collapse
|
7
|
Optimized High-Performance Liquid Chromatography Method for Determining Nine Cytokinins, Indole-3-acetic Acid and Abscisic Acid. SUSTAINABILITY 2021. [DOI: 10.3390/su13136998] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Liquid-liquid extraction and solid phase extraction followed by high-performance liquid chromatography (HPLC) connected with ultraviolet (UV) detection were used for the determination of phytohormones. The parameters influencing the performance of the HPLC-UV method, including composition of the mobile phase for gradient elution, column temperature, flow rate, and detection wavelength, were optimized. This method can simultaneously determine 11 phytohormones, including nine cytokinins, indole-3-acetic acid, and abscisic acid. The limit of detection of this method is 0.22 to 1.1 µg L−1, and the coefficient factors of linear regression are >0.998. The recoveries of the target phytohormones ranged between 62.1~109.4%, and the relative standard deviations were <10%. This method is suitable for determining phytohormones, especially cytokinins, in young panicles, roots, and xylem sap of rice plants.
Collapse
|
8
|
Magnetic hydrophobic solids prepared from Pickering emulsions for the extraction of polycyclic aromatic hydrocarbons from chamomile tea. Talanta 2021; 224:121915. [PMID: 33379117 DOI: 10.1016/j.talanta.2020.121915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 11/22/2022]
Abstract
Two types of magnetic hydrophobic solids were prepared by Pickering emulsion photopolymerization using polystyrene-modified magnetic nanoparticles (PS-MNPs) as emulsion stabilizers. Additionally, PS-MNPs provided magnetic character to the final solids. W/O Pickering emulsions were produced with high amounts of oily phase (above 50 wt%), while O/W Pickering emulsions were formed with higher amounts of aqueous phase (above 60 wt%). These two types of emulsions led to two kind of solids with very different structures despite being formed by the same components. In this way, W/O Pickering emulsions produced monolithic solids, while O/W Pickering emulsions formed magnetic microparticles. Multi-walled carbon nanotubes (MWCNTs) were also added to the emulsions to provide higher hydrophobic character to the final solids. The structure and morphology of both magnetic solids containing the MWCNTs was characterized by scanning electron microscopy (SEM). Finally, their extraction efficiency was evaluated using polycyclic aromatic hydrocarbons (PAHs) as target analytes, both qualitatively (visually by the fluorescence emitted before and after the extraction) and quantitatively (using gas chromatography coupled to mass spectrometry). Therefore, the LODs ranged from 1 to 4 μg L-1 and the LOQs were between 3 and 12 μg L-1. The reproducibility of the extraction procedure with different batches of emulsions was acceptable with RSD values <13%. Finally, a recovery study was carried out in complex matrices such as chamomile tea, obtaining excellent recovery values which ranged from 99 to 108%.
Collapse
|
9
|
Steiner E, Israeli A, Gupta R, Shwartz I, Nir I, Leibman-Markus M, Tal L, Farber M, Amsalem Z, Ori N, Müller B, Bar M. Characterization of the cytokinin sensor TCSv2 in arabidopsis and tomato. PLANT METHODS 2020; 16:152. [PMID: 33292327 PMCID: PMC7670716 DOI: 10.1186/s13007-020-00694-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/04/2020] [Indexed: 05/09/2023]
Abstract
BACKGROUND Hormones are crucial to plant life and development. Being able to follow the plants hormonal response to various stimuli and throughout developmental processes is an important and increasingly widespread tool. The phytohormone cytokinin (CK) has crucial roles in the regulation of plant growth and development. RESULTS Here we describe a version of the CK sensor Two Component signaling Sensor (TCS), referred to as TCSv2. TCSv2 has a different arrangement of binding motifs when compared to previous TCS versions, resulting in increased sensitivity in some examined tissues. Here, we examine the CK responsiveness and distribution pattern of TCSv2 in arabidopsis and tomato. CONCLUSIONS The increased sensitivity and reported expression pattern of TCSv2 make it an ideal TCS version to study CK response in particular hosts, such as tomato, and particular tissues, such as leaves and flowers.
Collapse
Affiliation(s)
- Evyatar Steiner
- Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, 7610001, Rehovot, Israel
| | - Alon Israeli
- Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, 7610001, Rehovot, Israel
| | - Rupali Gupta
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, The Volcani Center, 7505101, Rishon LeZion, Israel
| | - Ido Shwartz
- Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, 7610001, Rehovot, Israel
| | - Ido Nir
- Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, 7610001, Rehovot, Israel
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Meirav Leibman-Markus
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, The Volcani Center, 7505101, Rishon LeZion, Israel
| | - Lior Tal
- Department of Plant and Environmental Science, Weizmann Institute of Science, 7610001, Rehovot, Israel
- Department of Plant Biology, University of California - Davis, Davis, CA, 95616, USA
| | - Mika Farber
- Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, 7610001, Rehovot, Israel
| | - Ziva Amsalem
- Department of Plant and Environmental Science, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Naomi Ori
- Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, 7610001, Rehovot, Israel
| | - Bruno Müller
- Leibniz-Institut Für Pflanzengenetik Und Kulturpflanzenforschung (IPK), Corrensstraße 3, 06466, Seeland, Germany
- Microsynth AG, Schützenstrasse 15, 9436, Balgach, Switzerland
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, The Volcani Center, 7505101, Rishon LeZion, Israel.
| |
Collapse
|
10
|
Luo J, Huang Z, Liu L, Wang H, Ruan G, Zhao C, Du F. Recent advances in separation applications of polymerized high internal phase emulsions. J Sep Sci 2020; 44:169-187. [PMID: 32845083 DOI: 10.1002/jssc.202000612] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 01/11/2023]
Abstract
Polymerized high internal phase emulsions as highly porous adsorption materials have received increasing attention and wide applications in separation science in recent years due to their remarkable merits such as highly interconnected porosity, high permeability, good thermal and chemical stability, and tailorable chemistry. In this review, we attempt to introduce some strategies to utilize polymerized high internal phase emulsions for separation science, and highlight the recent advances made in the applications of polymerized high internal phase emulsions for diverse separation of small organic molecules, carbon dioxide, metal ions, proteins, and other interesting targets. Potential challenges and future perspectives for polymerized high internal phase emulsion research in the field of separation science are also speculated at the end of this review.
Collapse
Affiliation(s)
- Jinhua Luo
- College of Biological and Environmental Engineering, Changsha University, Changsha, P. R. China
| | - Zhujun Huang
- College of Biological and Environmental Engineering, Changsha University, Changsha, P. R. China.,Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P. R. China
| | - Linqi Liu
- College of Biological and Environmental Engineering, Changsha University, Changsha, P. R. China
| | - Haiyan Wang
- College of Biological and Environmental Engineering, Changsha University, Changsha, P. R. China
| | - Guihua Ruan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P. R. China
| | - Chenxi Zhao
- College of Biological and Environmental Engineering, Changsha University, Changsha, P. R. China
| | - Fuyou Du
- College of Biological and Environmental Engineering, Changsha University, Changsha, P. R. China.,Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P. R. China
| |
Collapse
|
11
|
Jiang LP, Li N, Liu LQ, Zheng X, Du FY, Ruan GH. Preparation and Application of Polymerized High Internal Phase Emulsion Monoliths for the Preconcentration and Determination of Malachite Green and Leucomalachite Green in Water Samples. JOURNAL OF ANALYSIS AND TESTING 2020. [DOI: 10.1007/s41664-020-00145-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Jiang X, Ruan G, Huang Y, Chen Z, Yuan H, Du F. Assembly and application advancement of organic-functionalized graphene-based materials: A review. J Sep Sci 2020; 43:1544-1557. [PMID: 32043693 DOI: 10.1002/jssc.201900694] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 01/12/2020] [Accepted: 02/04/2020] [Indexed: 12/23/2022]
Abstract
Owing to the remarkable physicochemical properties such as hydrophobicity, conductivity, elasticity, and light weight, graphene-based materials have emerged as one of the most appealing carbon allotropes in materials science and chemical engineering. Unfortunately, pristine graphene materials lack functional groups for further modification, severely hindering their practical applications. To render graphene materials with special characters for different applications, graphene oxide or reduced graphene oxide has been functionalized with different organic agents and assembled together, via covalent binding and various noncovalent forces such as π-π interaction, electrostatic interaction, and hydrogen bonding. In this review, we briefly discuss the state-of-the-art synthetic strategies and properties of organic-functionalized graphene-based materials, and then, present the prospective applications of organic-functionalized graphene-based materials in sample preparation.
Collapse
Affiliation(s)
- Xiangqiong Jiang
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, P. R. China
| | - Guihua Ruan
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, P. R. China
| | - Yipeng Huang
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, P. R. China
| | - Zhengyi Chen
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, P. R. China.,Pharmacy School, Guilin Medical University, Guangxi, P. R. China
| | - Huamei Yuan
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, P. R. China
| | - Fuyou Du
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, P. R. China
| |
Collapse
|
13
|
Wang L, Zou Y, Kaw HY, Wang G, Sun H, Cai L, Li C, Meng LY, Li D. Recent developments and emerging trends of mass spectrometric methods in plant hormone analysis: a review. PLANT METHODS 2020; 16:54. [PMID: 32322293 PMCID: PMC7161177 DOI: 10.1186/s13007-020-00595-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 04/04/2020] [Indexed: 05/18/2023]
Abstract
Plant hormones are naturally occurring small molecule compounds which are present at trace amounts in plant. They play a pivotal role in the regulation of plant growth. The biological activity of plant hormones depends on their concentrations in the plant, thus, accurate determination of plant hormone is paramount. However, the complex plant matrix, wide polarity range and low concentration of plant hormones are the main hindrances to effective analyses of plant hormone even when state-of-the-art analytical techniques are employed. These factors substantially influence the accuracy of analytical results. So far, significant progress has been realized in the analysis of plant hormones, particularly in sample pretreatment techniques and mass spectrometric methods. This review describes the classic extraction and modern microextraction techniques used to analyze plant hormone. Advancements in solid phase microextraction (SPME) methods have been driven by the ever-increasing requirement for dynamic and in vivo identification of the spatial distribution of plant hormones in real-life plant samples, which would contribute greatly to the burgeoning field of plant hormone investigation. In this review, we describe advances in various aspects of mass spectrometry methods. Many fragmentation patterns are analyzed to provide the theoretical basis for the establishment of a mass spectral database for the analysis of plant hormones. We hope to provide a technical guide for further discovery of new plant hormones. More than 140 research studies on plant hormone published in the past decade are reviewed, with a particular emphasis on the recent advances in mass spectrometry and sample pretreatment techniques in the analysis of plant hormone. The potential progress for further research in plant hormones analysis is also highlighted.
Collapse
Affiliation(s)
- Liyuan Wang
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Yilin Zou
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Han Yeong Kaw
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Gang Wang
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Huaze Sun
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Long Cai
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Chengyu Li
- State Key Laboratory of Application of Rare Earth Resources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
| | - Long-Yue Meng
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
- Department of Environmental Science, Yanbian University, Yanji, 133002 China
| | - Donghao Li
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| |
Collapse
|
14
|
Wang M, Nie H, Han D, Qiao X, Yan H, Shen S. Cauliflower-like resin microspheres with tuneable surface roughness as solid-phase extraction adsorbent for efficient extraction and determination of plant growth regulators in cucumbers. Food Chem 2019; 295:259-266. [DOI: 10.1016/j.foodchem.2019.05.130] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 05/13/2019] [Accepted: 05/19/2019] [Indexed: 10/26/2022]
|
15
|
Zhang W, Ruan G, Li X, Jiang X, Huang Y, Du F, Li J. Novel porous carbon composites derived from a graphene-modified high-internal- phase emulsion for highly efficient separation and enrichment of triazine herbicides. Anal Chim Acta 2019; 1071:17-24. [DOI: 10.1016/j.aca.2019.04.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 10/27/2022]
|
16
|
Zhang T, Sanguramath RA, Israel S, Silverstein MS. Emulsion Templating: Porous Polymers and Beyond. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02576] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tao Zhang
- Department of Materials Science and Engineering, Technion−Israel Institute of Technology, Haifa 32000, Israel
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | | | - Sima Israel
- Department of Materials Science and Engineering, Technion−Israel Institute of Technology, Haifa 32000, Israel
| | - Michael S. Silverstein
- Department of Materials Science and Engineering, Technion−Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
17
|
Desire CT, Arrua RD, Mansour FR, Bon SAF, Hilder EF. Effect of shearing stress on the radial heterogeneity and chromatographic performance of styrene-based polymerised high internal phase emulsions prepared in capillary format. RSC Adv 2019; 9:7301-7313. [PMID: 35519965 PMCID: PMC9061218 DOI: 10.1039/c8ra06188b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 01/30/2019] [Indexed: 11/22/2022] Open
Abstract
Poly(styrene-co-divinylbenzene) monoliths were prepared from the polymerisation of water-in-monomer high internal phase emulsions consisting of a 90 vol% internal phase and stabilised by the non-ionic surfactant Span 80®. The materials were prepared in capillary housings of various internal diameters ranging from 150 μm to 540 μm by simply passing the emulsion through the capillaries. When low shear (300 rpm) was used for emulsification, the droplet and resulting void size distributions were observed to shift towards lower values when the emulsions were forced through capillaries of internal diameter less than 540 μm and all columns exhibited significant radial heterogeneity. When high shear was employed (14 000 rpm) the resulting emulsions preserved their structure when forced through these capillaries and possessed narrower void size distributions with no obvious radial heterogeneity observed upon curing. This resulted in significantly improved chromatographic performance for the separation of a standard mixture of proteins when compared to the materials prepared under low shear.
Collapse
Affiliation(s)
- Christopher T Desire
- Australian Centre for Research on Separation Science (ACROSS), School of Physical Sciences, University of Tasmania Hobart Australia
| | - R Dario Arrua
- Future Industries Institute, University of South Australia Adelaide Australia +61 883026292
| | - Fotouh R Mansour
- Department of Pharmaceutical Analytical Chemistry, Tanta University Tanta Egypt
| | - Stefan A F Bon
- Department of Chemistry, The University of Warwick Coventry CV4 7AL UK
| | - Emily F Hilder
- Future Industries Institute, University of South Australia Adelaide Australia +61 883026292
| |
Collapse
|
18
|
Magnetic stir cake sorptive extraction of trace tetracycline antibiotics in food samples: preparation of metal–organic framework-embedded polyHIPE monolithic composites, validation and application. Anal Bioanal Chem 2019; 411:2239-2248. [DOI: 10.1007/s00216-019-01660-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/26/2019] [Accepted: 02/01/2019] [Indexed: 01/23/2023]
|
19
|
Weinstock L, Sanguramath RA, Silverstein MS. Encapsulating an organic phase change material within emulsion-templated poly(urethane urea)s. Polym Chem 2019. [DOI: 10.1039/c8py01733f] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Interfacial step growth polymerization within oil-in-water high internal phase emulsions was used to synthesize poly(urethane urea) monoliths, consisting of 90% organic phase change material encapsulated within micrometer-scale capsules, for thermal energy storage and release applications.
Collapse
Affiliation(s)
- Liora Weinstock
- Department of Materials Science and Engineering
- Technion – Israel Institute of Technology
- Haifa 32000
- Israel
| | | | - Michael S. Silverstein
- Department of Materials Science and Engineering
- Technion – Israel Institute of Technology
- Haifa 32000
- Israel
| |
Collapse
|
20
|
Zhou Y, Yin H, Wang Y, Sui C, Wang M, Ai S. Electrochemical aptasensors for zeatin detection based on MoS 2 nanosheets and enzymatic signal amplification. Analyst 2018; 143:5185-5190. [PMID: 30264075 DOI: 10.1039/c8an01356j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A simple and sensitive electrochemical aptasensor was constructed for zeatin detection, where MoS2 nanosheets were used as the immobilization matrix for gold nanoparticles (AuNPs), and AuNPs were employed as the immobilization matrix to probe DNA. After the aptamer DNA and assist DNA hybridized with probe DNA, Y-type DNA can be formed with two biotins at the terminals of aptamer DNA. Then, avidin modified alkaline phosphatase (Avidin-ALP) can be further modified on the electrode surface through the biotin and avidin interaction. Under the catalytic effect of ALP, p-nitrophenylphosphate disodium (PNPP) can be hydrolyzed to produce p-nitrophenol (PNP). However, in the presence of zeatin, the formed Y-type DNA can be destroyed due to the formation of the zeatin-aptamer conjugate, which further reduces the amount of PNP and leads to the decrease of the oxidation signal of PNP. Under the optimum conditions, the change of the oxidation peak current of PNP was inversely proportional to the logarithm value of zeatin concentration in the range of 50 pM-50 nM. The detection limit was calculated to be 16.6 pM. This electrochemical method also showed good detection selectivity and stability. The potential applicability of this method was proved by detecting zeatin in real samples.
Collapse
Affiliation(s)
- Yunlei Zhou
- College of Chemistry and Material Science, Shandong Agricultural University, 271018, Taian, Shandong, P.R. China.
| | | | | | | | | | | |
Collapse
|
21
|
Cheng Z, Du F, Qin Q, Sun L, Zeng Q, Ruan G, Li J. Graphene oxide composites for magnetic solid-phase extraction of trace cytokinins in plant samples followed by liquid chromatography-tandem mass spectrometry. J Sep Sci 2018; 41:2386-2392. [DOI: 10.1002/jssc.201701491] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/09/2018] [Accepted: 02/10/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Zhenfang Cheng
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials; College of Chemistry and Bioengineering; Guilin University of Technology; Guilin China
| | - Fuyou Du
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials; College of Chemistry and Bioengineering; Guilin University of Technology; Guilin China
| | - Qun Qin
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials; College of Chemistry and Bioengineering; Guilin University of Technology; Guilin China
| | - Lingshun Sun
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials; College of Chemistry and Bioengineering; Guilin University of Technology; Guilin China
| | - Qiulian Zeng
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials; College of Chemistry and Bioengineering; Guilin University of Technology; Guilin China
| | - Guihua Ruan
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials; College of Chemistry and Bioengineering; Guilin University of Technology; Guilin China
| | - Jianping Li
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials; College of Chemistry and Bioengineering; Guilin University of Technology; Guilin China
| |
Collapse
|
22
|
Tripodo G, Marrubini G, Corti M, Brusotti G, Milanese C, Sorrenti M, Catenacci L, Massolini G, Calleri E. Acrylate-based poly-high internal phase emulsions for effective enzyme immobilization and activity retention: from computationally-assisted synthesis to pharmaceutical applications. Polym Chem 2018. [DOI: 10.1039/c7py01626c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PolyHIPE functional materials were chemically conjugated with a model enzyme. It retained its activity upon flow as demonstrated by the conversion of a specific substrate.
Collapse
Affiliation(s)
- G. Tripodo
- Department of Drug Sciences
- University of Pavia
- Pavia
- Italy
| | - G. Marrubini
- Department of Drug Sciences
- University of Pavia
- Pavia
- Italy
| | - M. Corti
- Department of Drug Sciences
- University of Pavia
- Pavia
- Italy
| | - G. Brusotti
- Department of Drug Sciences
- University of Pavia
- Pavia
- Italy
| | - C. Milanese
- C.S.G.I. - Department of Chemistry
- Physical-Chemistry Section
- University of Pavia
- Pavia
- Italy
| | - M. Sorrenti
- Department of Drug Sciences
- University of Pavia
- Pavia
- Italy
| | - L. Catenacci
- Department of Drug Sciences
- University of Pavia
- Pavia
- Italy
| | - G. Massolini
- Department of Drug Sciences
- University of Pavia
- Pavia
- Italy
| | - E. Calleri
- Department of Drug Sciences
- University of Pavia
- Pavia
- Italy
| |
Collapse
|
23
|
|
24
|
Khodabandeh A, Arrua RD, Mansour FR, Thickett SC, Hilder EF. PEO-based brush-type amphiphilic macro-RAFT agents and their assembled polyHIPE monolithic structures for applications in separation science. Sci Rep 2017; 7:7847. [PMID: 28798377 PMCID: PMC5552774 DOI: 10.1038/s41598-017-08423-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/10/2017] [Indexed: 11/08/2022] Open
Abstract
Polymerized High Internal Phase Emulsions (PolyHIPEs) were prepared using emulsion-templating, stabilized by an amphiphilic diblock copolymer prepared by reversible addition fragmentation chain transfer (RAFT) polymerization. The diblock copolymer consisted of a hydrophilic poly(ethylene glycol) methyl ether acrylate (PEO MA, average Mn 480) segment and a hydrophobic styrene segment, with a trithiocarbonate end-group. These diblock copolymers were the sole emulsifiers used in stabilizing "inverse" (oil-in-water) high internal phase emulsion templates, which upon polymerization resulted in a polyHIPE exhibiting a highly interconnected monolithic structure. The polyHIPEs were characterized by FTIR spectroscopy, BET surface area measurements, SEM, SEM-EDX, and TGA. These materials were subsequently investigated as stationary phase for high-performance liquid chromatography (HPLC) via in situ polymerization in a capillary format as a 'column housing'. Initial separation assessments in reversed-phase (RP) and hydrophilic interaction liquid chromatographic (HILIC) modes have shown that these polyHIPEs are decorated with different microenvironments amongst the voids or domains of the monolithic structure. Chromatographic results suggested the existence of RP/HILIC mixed mode with promising performance for the separation of small molecules.
Collapse
Affiliation(s)
- Aminreza Khodabandeh
- Australian Centre for Research on Separation Science (ACROSS), University of Tasmania, Tasmania, Australia
- Future Industries Institute, University of South Australia, Building X, Mawson Lakes Campus, GPO Box 2471, Adelaide, SA 5001, Australia
| | - R Dario Arrua
- Future Industries Institute, University of South Australia, Building X, Mawson Lakes Campus, GPO Box 2471, Adelaide, SA 5001, Australia
| | - Fotouh R Mansour
- Australian Centre for Research on Separation Science (ACROSS), University of Tasmania, Tasmania, Australia
- Department of Pharmaceutical Analytical Chemistry, Tanta University, Tanta, Egypt
| | - Stuart C Thickett
- School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, 7001, Australia
| | - Emily F Hilder
- Future Industries Institute, University of South Australia, Building X, Mawson Lakes Campus, GPO Box 2471, Adelaide, SA 5001, Australia.
| |
Collapse
|
25
|
Aral H, Haşimi D, Aral T, Levent A, Ziyadanoğullari B. Separation, optimization, and quantification of cytokinins by a recently developed amide-embedded stationary phase. J LIQ CHROMATOGR R T 2017. [DOI: 10.1080/10826076.2017.1333005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Hayriye Aral
- Department of Chemistry, Faculty of Science and Art, University of Batman, Batman, Turkey
| | - Duygu Haşimi
- Department of Chemistry, Faculty of Science, University of Dicle, Diyarbakır, Turkey
| | - Tarık Aral
- Department of Chemistry, Faculty of Science and Art, University of Batman, Batman, Turkey
| | - Abdulkadir Levent
- Department of Chemistry, Faculty of Science and Art, University of Batman, Batman, Turkey
| | | |
Collapse
|
26
|
Aral H, Haşimi D, Aral T, Levent A, Ziyadanoğullari B. Separation, optimization, and quantification of cytokinins by a recently developed amide-embedded stationary phase. J LIQ CHROMATOGR R T 2017; 40:549-555. [DOI: https:/doi.org/10.1080/10826076.2017.1333005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Affiliation(s)
- Hayriye Aral
- Department of Chemistry, Faculty of Science and Art, University of Batman, Batman, Turkey
| | - Duygu Haşimi
- Department of Chemistry, Faculty of Science, University of Dicle, Diyarbakır, Turkey
| | - Tarık Aral
- Department of Chemistry, Faculty of Science and Art, University of Batman, Batman, Turkey
| | - Abdulkadir Levent
- Department of Chemistry, Faculty of Science and Art, University of Batman, Batman, Turkey
| | | |
Collapse
|
27
|
High Internal Phase Emulsion Polymeric Monolith Extraction Coupling with High-Performance Liquid Chromatography for the Determination of Para Red and Sudan Dyes in Chilli Samples. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0751-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
28
|
Yin D, Guan Y, Li B, Zhang B. Antagonistic effect of particles and surfactant on pore structure of macroporous materials based on high internal phase emulsion. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.06.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Zhang Q, Li G, Xiao X, Zhan S, Cao Y. Efficient and Selective Enrichment of Ultratrace Cytokinins in Plant Samples by Magnetic Perhydroxy-Cucurbit[8]uril Microspheres. Anal Chem 2016; 88:4055-62. [PMID: 26977773 DOI: 10.1021/acs.analchem.6b00408] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cytokinins play a critical role in controlling plant growth and development, but it is difficult to be determined in plant samples due to the extremely low concentration level of picomole/gram. So it is important for efficient sample preparation with selective enrichment and rapid separation for accurate analysis of cytokinins. Herein, a supramolecular perhydroxy-cucurbit[8]uril (PCB[8]) was fabricated into the Fe3O4 magnetic particles via chemical bonding assembly and magnetic perhydroxy-cucurbit[8]uril (MPC) materials were obtained. The MPC had good enrichment capability to cytokinins and the enrichment factors were more than 208. The interaction of MPC and cytokinins was investigated by adsorption test and density functional theory (DFT) calculation, the results showed that the main drive forces were the host-guest interaction and hydrogen-bonding interaction between the perhydroxy-cucurbit[8]uril with analytes. Combined with ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), the MPC was used as a sorbent of magnetic solid-phase extraction for the analysis of cytokinins in plant samples. A sensitive and selective UPLC-MS/MS method was developed with low detection limits of 0.14-0.32 ng/L for cytokinins analysis. Five cytokinins including zeatin riboside, meta-topolin, kinetin, kinetin riboside, and zip with 6.12-87.3 ng/kg were determined in the soybean sprout and Arabidopsis thaliana. The recoveries were in the range of 76.2-110% with relative standard deviations (n = 5) of 2.3-9.7%. On the basis of these results, magnetic perhydroxy-cucurbit[8]uril materials with selective enrichment capability have good potential on the analysis of ultratrace targets from complicated sample matrixes.
Collapse
Affiliation(s)
- Qianchun Zhang
- School of Chemistry and Chemical Engineering, Sun Yat-sen University , Guangzhou, 510275, China
- School of Biology and Chemistry, Xingyi Normal University for Nationalities , Xingyi, 562400, China
| | - Gongke Li
- School of Chemistry and Chemical Engineering, Sun Yat-sen University , Guangzhou, 510275, China
| | - Xiaohua Xiao
- School of Chemistry and Chemical Engineering, Sun Yat-sen University , Guangzhou, 510275, China
| | - Song Zhan
- Shimadzu Global COE for Application & Technical Development , Guangzhou, 510010, China
| | - Yujuan Cao
- School of Chemistry and Environment, South China Normal University , Guangzhou 510006, China
| |
Collapse
|
30
|
Brusotti G, Calleri E, Milanese C, Catenacci L, Marrubini G, Sorrenti M, Girella A, Massolini G, Tripodo G. Rational design of functionalized polyacrylate-based high internal phase emulsion materials for analytical and biomedical uses. Polym Chem 2016. [DOI: 10.1039/c6py01992g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functional polyacrylate-based materials rationally designed by high internal phase emulsion (polyHIPE) are reported.
Collapse
Affiliation(s)
| | - Enrica Calleri
- Department of Drug Sciences
- University of Pavia
- Pavia
- Italy
| | - Chiara Milanese
- C.S.G.I. - Department of Chemistry
- Physical-Chemistry Section
- University of Pavia
- Pavia
- Italy
| | | | | | | | - Alessandro Girella
- C.S.G.I. - Department of Chemistry
- Physical-Chemistry Section
- University of Pavia
- Pavia
- Italy
| | | | | |
Collapse
|
31
|
Su R, Ruan G, Chen Z, Du F, Li J. Application of mercapto-silica polymerized high internal phase emulsions for the solid-phase extraction and preconcentration of trace lead(II). J Sep Sci 2015; 38:4262-8. [DOI: 10.1002/jssc.201500580] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Rihui Su
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering; Guilin University of Technology; Guangxi China
| | - Guihua Ruan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering; Guilin University of Technology; Guangxi China
| | - Zhengyi Chen
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering; Guilin University of Technology; Guangxi China
| | - Fuyou Du
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering; Guilin University of Technology; Guangxi China
| | - Jianping Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering; Guilin University of Technology; Guangxi China
| |
Collapse
|
32
|
Du F, Zheng X, Sun L, Qin Q, Guo L, Ruan G. Development and validation of polymerized high internal phase emulsion monoliths coupled with HPLC and fluorescence detection for the determination of trace tetracycline antibiotics in environmental water samples. J Sep Sci 2015; 38:3774-80. [DOI: 10.1002/jssc.201500497] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 05/11/2015] [Accepted: 08/20/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Fuyou Du
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering; Guilin University of Technology; Guangxi China
| | - Xian Zheng
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering; Guilin University of Technology; Guangxi China
| | - Lin Sun
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering; Guilin University of Technology; Guangxi China
| | - Qun Qin
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering; Guilin University of Technology; Guangxi China
| | - Lin Guo
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering; Guilin University of Technology; Guangxi China
| | - Guihua Ruan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering; Guilin University of Technology; Guangxi China
| |
Collapse
|