1
|
Gierke AM, Hessling M. Photoinactivation by UVA radiation and visible light of Candida auris compared to other fungi. Photochem Photobiol Sci 2024; 23:681-692. [PMID: 38446403 DOI: 10.1007/s43630-024-00543-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/22/2024] [Indexed: 03/07/2024]
Abstract
In addition to the rising number of patients affected by viruses and bacteria, the number of fungal infections has also been rising over the years. Due to the increase in resistance to various antimycotics, investigations into further disinfection options are important. In this study, two yeasts (Candida auris and Saccharomyces cerevisiae) and a mold (Cladosporium cladosporioides) were irradiated at 365, 400, and 450 nm individually. The resulting log 1 reduction doses were determined and compared with other studies. Furthermore, fluorescence measurements of C. auris were performed to detect possible involved photosensitizers. A roughly exponential photoinactivation was observed for all three fungi and all irradiation wavelengths with higher D90 doses for longer wavelengths. The determined log 1 reduction doses of C. auris and S. cerevisiae converged with increasing wavelength. However, S. cerevisiae was more photosensitive than C. auris for all irradiation wavelengths and is therefore not a suitable C. auris surrogate for photoinactivation experiments. For the mold C. cladosporioides, much higher D90 doses were determined than for both yeasts. Concerning potential photosensitizers, flavins and various porphyrins were detected by fluorescence measurements. By excitation at 365 nm, another, so far unreported fluorophore and potential photosensitizer was also observed. Based on its fluorescence spectrum, we assume it to be thiamine.Graphic abstract.
Collapse
Affiliation(s)
- Anna-Maria Gierke
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Albert-Einstein-Allee 55, 89081, Ulm, Germany.
| | - Martin Hessling
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Albert-Einstein-Allee 55, 89081, Ulm, Germany
| |
Collapse
|
2
|
Passaglia E, Sgarbossa A. Innovative Phosphorene Nanoplatform for Light Antimicrobial Therapy. Pharmaceutics 2023; 15:2748. [PMID: 38140089 PMCID: PMC10747032 DOI: 10.3390/pharmaceutics15122748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Over the past few years, antibiotic resistance has reached global dimensions as a major threat to public health. Consequently, there is a pressing need to find effective alternative therapies and therapeutic agents to combat drug-resistant pathogens. Photodynamic therapy (PDT), largely employed as a clinical treatment for several malignant pathologies, has also gained importance as a promising antimicrobial approach. Antimicrobial PDT (aPDT) relies on the application of a photosensitizer able to produce singlet oxygen (1O2) or other cytotoxic reactive oxygen species (ROS) upon exposure to appropriate light, which leads to cell death after the induced photodamage. Among different types of 2D nanomaterials with antimicrobial properties, phosphorene, the exfoliated form of black phosphorus (bP), has the unique property intrinsic photoactivity exploitable for photothermal therapy (PTT) as well as for PDT against pathogenic bacteria.
Collapse
Affiliation(s)
- Elisa Passaglia
- National Research Council-Institute of Chemistry of OrganoMetallic Compounds (CNR-ICCOM), SS Pisa, Via Moruzzi 1, 56124 Pisa, Italy;
| | - Antonella Sgarbossa
- National Research Council-Nanoscience Institute (CNR-NANO) and NEST-Scuola Normale Superiore, Piazza S. Silvestro 12, 56127 Pisa, Italy
| |
Collapse
|
3
|
Salviatto LTC, Prates RA, Pavani C, Bussadori SK, Deana AM. The influence of growth medium on the photodynamic susceptibility of Aggregatibacter actinomycetemcomitans to antimicrobial blue light. Lasers Med Sci 2023; 38:274. [PMID: 37993626 DOI: 10.1007/s10103-023-03937-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
The aim of this study was to investigate whether antimicrobial blue light (aBL) can cause the death of Aggregatibacter actinomycetemcomitans (A.a) and to determine the influence of different culture media, specifically brain heart infusion and blood agar, on bacterial survival fraction. An LED emitting at 403 ± 15 nm, with a radiant power of 1W, irradiance of 588.2 mW/cm2, and an irradiation time of 0 min, 1 min, 5 min, 10 min, 30 min, and 60 min, was used. The plates were incubated in microaerophilic conditions at 37 °C for 48 h, and the colony-forming units were counted. The photosensitizers were investigated using spectroscopy and fluorescence microscopy. There was no significant difference between the culture media (p > 0.05). However, a statistical reduction in both media was observed at 30 min (1058 J/cm2) (p < 0.05). The findings of this study suggest that aBL has the potential to kill bacteria regardless of the culture media used. Light therapy could be a promising and cost-effective strategy for preventing periodontal disease when used in combination with mechanical plaque control.
Collapse
Affiliation(s)
| | - Renato Araujo Prates
- Biophotonics Applied to Health Science Postgraduate program, Nove de Julho UniversityUNINOVE, São Paulo, Brazil
| | - Christiane Pavani
- Biophotonics Applied to Health Science Postgraduate program, Nove de Julho UniversityUNINOVE, São Paulo, Brazil
| | - Sandra Kalil Bussadori
- Biophotonics Applied to Health Science Postgraduate program, Nove de Julho UniversityUNINOVE, São Paulo, Brazil
| | - Alessandro Melo Deana
- Biophotonics Applied to Health Science Postgraduate program, Nove de Julho UniversityUNINOVE, São Paulo, Brazil
| |
Collapse
|
4
|
Protoporphyrin IX derived from dual-species anaerobic biofilms of Fusobacterium necrophorum and Porphyromonas levii attenuates bovine neutrophil function. Biofilm 2022; 4:100095. [DOI: 10.1016/j.bioflm.2022.100095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022] Open
|
5
|
Exploiting Violet-Blue Light to Kill Campylobacter jejuni: Analysis of Global Responses, Modeling of Transcription Factor Activities, and Identification of Protein Targets. mSystems 2022; 7:e0045422. [PMID: 35924857 PMCID: PMC9426514 DOI: 10.1128/msystems.00454-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Campylobacter jejuni is a microaerophilic foodborne zoonotic pathogen of worldwide concern as the leading cause of bacterial gastroenteritis. Many strains are increasingly antibiotic resistant and new methods of control are required to reduce food-chain contamination. One possibility is photodynamic inactivation (PDI) using violet-blue (VB) light, to which C. jejuni is highly susceptible. Here, we show that flavin and protoporphyrin IX are major endogenous photosensitizers and that exposure of cells to VB light increases intracellular reactive oxygen species (ROS) to high levels, as indicated by a dichlorodihydrofluorescein reporter. Unusually for an oxygen-respiring bacterium, C. jejuni employs several ROS-sensitive iron-sulfur cluster enzymes in central metabolic pathways; we show that VB light causes rapid inactivation of both pyruvate and 2-oxoglutarate oxidoreductases, thus interrupting the citric acid cycle. Cells exposed to VB light also lose heme from c-type cytochromes, restricting electron transport, likely due to irreversible oxidation of heme-ligating cysteine residues. Evaluation of global gene expression changes by RNAseq and probabilistic modeling showed a two-stage protein damage/oxidative stress response to VB light, driven by specific regulators, including HspR, PerR, Fur, and RacR. Deletion mutant analysis showed that superoxide dismutase and the cytochrome CccA were particularly important for VB light survival and that abolishing repression of chaperones and oxidative stress resistance genes by HcrA, HspR, or PerR increased tolerance to VB light. Our results explain the high innate sensitivity of C. jejuni to VB light and provide new insights that may be helpful in exploiting PDI for novel food-chain interventions to control this pathogen. IMPORTANCE Campylobacteriosis caused by C. jejuni is one of the most widespread zoonotic enteric diseases worldwide and represents an enormous human health and economic burden, compounded by the emergence of antibiotic-resistant strains. New interventions are urgently needed to reduce food-chain contamination. Although UV light is well known to be bactericidal, it is highly mutagenic and problematic for continuous exposure in food production facilities; in contrast, narrow spectrum violet-blue (VB) light is much safer. We confirmed that C. jejuni is highly susceptible to VB light and then identified some of the global regulatory networks involved in responding to photo-oxidative damage. The identification of damaged cellular components underpins efforts to develop commercial applications of VB light-based technologies.
Collapse
|
6
|
Tran VN, Park S, Khan F, Truong VG, Jeong S, Lee DH, Kim YM, Kang HW. Collective bacterial disinfection by opto-chemical treatment on mature biofilm in clinical endoscope. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 226:112367. [PMID: 34847498 DOI: 10.1016/j.jphotobiol.2021.112367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023]
Abstract
The present study proposes an innovative opto-chemical treatment using a basket-integrated optical device (BIOD) to disinfect mature bacterial biofilm on endoscope channels. A BIOD was designed to position an optical diffuser on the central axis of an endoscope channel and to distribute laser light concentrically to the bacterial biofilm on the channel surface. To apply thermal damage and oxidative stress to the bacterial biofilm, a low concentration of a crosslinking agent (glutaraldehyde ~0.5%) was combined with 808 nm infrared (IR) and 405 nm blue (BL) laser lights. The applied irradiances of IR and BL were 10 W/cm2 and 1.6 W/cm2 for Teflon channel model and 20 W/cm2 and 3.2 W/cm2 for a clinical model, respectively. Individual irradiation of either IR or BL for 180 s induced the maximum temperatures of 62 ± 2 °C and 53 ± 3 °C on the biofilm, respectively. The simultaneous opto-chemical treatment reduced a significant population of the bacterial biofilms (7.5-log10 for Staphylococcus aureus and 7.1-log10 for Pseudomonas aeruginosa), which were 2.9-fold and 3.9-fold higher than that of the standard treatment with 2% glutaraldehyde (GA) solution, respectively. The proposed opto-chemical disinfection method can help reduce multi-drug resistant bacteria and prevent cross-infection during the clinical usage of a flexible endoscope.
Collapse
Affiliation(s)
- Van Nam Tran
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, South Korea
| | - Suhyun Park
- Department of Electronic and Electrical Engineering, Ewha Womans University, Seoul 03760, South Korea
| | - Fazlurrahman Khan
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, South Korea
| | - Van Gia Truong
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, South Korea
| | - Seok Jeong
- Division of Gastroenterology, Department of Internal Medicine, Inha University College of Medicine, Incheon 22212, South Korea
| | - Don Haeng Lee
- Division of Gastroenterology, Department of Internal Medicine, Inha University College of Medicine, Incheon 22212, South Korea
| | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, South Korea; Department of Food Science and Technology, Pukyong National University, Busan 48513, South Korea
| | - Hyun Wook Kang
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, South Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, South Korea; Department of Biomedical Engineering, Pukyong National University, Busan 48513, South Korea.
| |
Collapse
|
7
|
Buchanan BC, Safavinia B, Wu L, Yoon JY. Smartphone-based autofluorescence imaging to detect bacterial species on laboratory surfaces. Analyst 2022; 147:2980-2987. [DOI: 10.1039/d2an00358a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work demonstrated instantaneous, reagent- and staining-free, smartphone-based autofluorescence detection of bacterial contamination on typical laboratory desk surfaces. Detection was successfully distinguished from protein, salt, and tap water.
Collapse
Affiliation(s)
- Bailey C. Buchanan
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, USA
| | - Babak Safavinia
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, USA
| | - Lillian Wu
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, USA
| | - Jeong-Yeol Yoon
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
8
|
Bridger KG, Roccabruna JR, Baran TM. Optical property recovery with spatially-resolved diffuse reflectance at short source-detector separations using a compact fiber-optic probe. BIOMEDICAL OPTICS EXPRESS 2021; 12:7388-7404. [PMID: 35003841 PMCID: PMC8713658 DOI: 10.1364/boe.443332] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 05/25/2023]
Abstract
We describe a compact fiber-optic probe (2 mm outside diameter) that utilizes spatially-resolved diffuse reflectance for tissue optical property recovery. Validation was performed in phantoms containing Intralipid 20% as scatterer, and methylene blue (MB), MnTPPS, and/or India ink as absorbers. Over a range of conditions, the reduced scattering coefficient was recovered with a root mean square error (RMSE) of 0.86-2.7 cm-1 (average error = 3.8%). MB concentration was recovered with RMSE = 0.26-0.52 µM (average error = 15.0%), which did not vary with inclusion of MnTPPS (p=0.65). This system will be utilized to determine optical properties in human abscesses, in order to generate treatment plans for photodynamic therapy.
Collapse
Affiliation(s)
- Karina G. Bridger
- Department of Biomedical Engineering, University of Rochester, 201 Robert B. Goergen Hall, P.O. Box 270168, Rochester, NY 14627, USA
| | - Jacob R. Roccabruna
- Department of Biomedical Engineering, University of Rochester, 201 Robert B. Goergen Hall, P.O. Box 270168, Rochester, NY 14627, USA
| | - Timothy M. Baran
- Department of Biomedical Engineering, University of Rochester, 201 Robert B. Goergen Hall, P.O. Box 270168, Rochester, NY 14627, USA
- Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Ave, Box 648, Rochester, NY 14642, USA
| |
Collapse
|
9
|
Gupta J, Taneja S, Jain A. Effect of dental acid etchant-mediated photodynamic therapy on bacterial reduction and microshear bond strength of composite to dentin - An in vitro study. J Conserv Dent 2021; 24:214-218. [PMID: 34759593 PMCID: PMC8562824 DOI: 10.4103/jcd.jcd_620_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/03/2021] [Accepted: 07/14/2021] [Indexed: 11/29/2022] Open
Abstract
Objective: The objective of this study was to assess the effect of dental acid etchant (DAE)-mediated photodynamic therapy on bacterial reduction and microshear bond strength of composite to dentin. Materials and Methods: Eighty permanent third molars after sample preparation were exposed to a cariogenic challenge with Streptococcus mutans. After incubation, specimens were randomly divided into four groups (n = 20): Group I – DAE, Group II – low-level laser (LLL), Group III – diode laser + methylene blue (MB + L), and Group IV – diode laser + DAE (DAE + L). Half of the specimens from each group were selected for bacterial reduction assessment and the other half for microshear bond strength. All the samples for assessment of bacterial reduction (before and after intervention) were seeded onto the surface of mitis-salivarius-bacitracin medium. After incubation, the viable bacterial count was determined in colony-forming unit/mL. For microshear bond strength assessment, samples were subjected to various treatment modalities and then bonding and debonding procedure was performed for blocks of composite and values were recorded. Results: Significant reductions in S. mutans were observed in all the groups – Group I (DAE) 68.50%, Group II (LLL) 55.90%, Group III (MB + L) 88.60%, and Group IV (DAE + L) 87% with comparable bacterial reduction between Group III (MB + L) and Group IV (DAE + L). Furthermore, a significant difference in bond strength values was seen in Group III (MB + L) 10.99 MPa and Group IV (DAE + L) 17.99 MPa whereas an insignificant difference was found between Group I (DAE) 20.74 MPa, Group II (LLL) 18.27 MPa, and Group IV (DAE + L). Conclusion: DAE caused a comparable reduction in bacterial count to MB-assisted PDT and also there was no adverse effect on bond strength values. PDT can be performed while acid etchant containing MB dye is being applied in the cavity, thus reducing operative time and enhancing cavity disinfection.
Collapse
Affiliation(s)
- Jaya Gupta
- Department of Conservative Dentistry and Endodontics, I.T.S.-C.D.S.R, Ghaziabad, Uttar Pradesh, India
| | - Sonali Taneja
- Department of Conservative Dentistry and Endodontics, I.T.S.-C.D.S.R, Ghaziabad, Uttar Pradesh, India
| | - Anshi Jain
- Department of Oral Pathology, I.T.S.-C.D.S.R, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
10
|
Indrawati R, Zubaidah E, Sutrisno A, Limantara L, Brotosudarmo THP. Remnant photosynthetic pigments in tea dregs: identification, composition, and potential use as antibacterial photosensitizer. POTRAVINARSTVO 2021. [DOI: 10.5219/1651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The production of tea dregs is continually increasing along with the growth of people's interest in ready-to-drink beverages. However, the recent development of research on the use of tea dregs is still very limited. The present study was aimed to identify the remnant photosynthetic pigments in tea dregs, determine their composition, and evaluate their potential use as natural antibacterial agents based on light-induced reaction (photosensitization). The tea dregs from six commercial teas, consisting of green and black teas, were analyzed using high-performance liquid chromatography (HPLC) with a photodiode array detector, and the spectroscopic data were analyzed from 350 to 700 nm. Pigment identification was performed based on spectral characteristics, and pigment composition in the extracts from the dregs was determined by a three-dimensional multi-chromatogram analysis method. The dominant pigment fractions in both tea types were pheophytin a and its isomers, as well as pheophytin b. Although the dregs of black teas generally contain fewer remnant pigments, they possess residual chlorophyll b, which is not found in the dregs of green teas. In thirty-minutes illumination under 50 W red light-emitting diode, the presence of pigments from tea dregs caused up to 0.87 and 0.35 log reduction of Staphylococcus aureus and Escherichia coli, respectively. The disparity of pigments composition among tea types does not strongly influence their photosensitization activity against both bacteria. Hence, upon further application, the amount of total remnant pigments in the dregs could be taken as substantial consideration instead of tea types.
Collapse
|
11
|
Tran VN, Saravana PS, Park S, Truong VG, Chun BS, Kang HW. Opto-chemical treatment for enhanced high-level disinfection of mature bacterial biofilm in a Teflon-based endoscope model. BIOMEDICAL OPTICS EXPRESS 2021; 12:5736-5750. [PMID: 34692212 PMCID: PMC8515982 DOI: 10.1364/boe.434047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/25/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Medical societies and public health agencies rigorously emphasize the importance of adequate disinfection of flexible endoscopes. The aim of this work was to propose a novel opto-chemical disinfection treatment against Staphylococcus aureus grown in mature biofilm on Teflon-based endoscope channel models. Laser irradiation using near-infrared and blue wavelengths combined with a low concentration of chemical disinfectant induced both irreversible thermal denaturation and intercellular oxidative stress as a combined mechanism for an augmented antimicrobial effect. The opto-chemical method yielded a 6.7-log10 reduction of the mature Staphylococcus aureus biofilms (i.e., approximately 1.0-log10 higher than current requirement of standard treatment). The proposed technique may be a feasible disinfection method for mitigating the risk associated with infection transmission.
Collapse
Affiliation(s)
- Van Nam Tran
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea
- These authors contributed equally to this work
| | - Periaswamy Sivagnanam Saravana
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
- These authors contributed equally to this work
| | - Suhyun Park
- Department of Electronic and Electrical Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Van Gia Truong
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Byung-Soo Chun
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Hyun Wook Kang
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea
- Department of Biomedical Engineering and Marine-integrated Biomedical Technology Center, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
12
|
Indrawati R, Zubaidah E, Sutrisno A, Limantara L, Yusuf MM, Brotosudarmo THP. Visible Light-Induced Antibacterial Activity of Pigments Extracted from Dregs of Green and Black Teas. SCIENTIFICA 2021; 2021:5524468. [PMID: 34234972 PMCID: PMC8216794 DOI: 10.1155/2021/5524468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/28/2021] [Indexed: 05/17/2023]
Abstract
Chlorophyll and its derivatives are potential natural sensitizers frequently applied in antimicrobial photodynamic therapy. Chlorophyll derivatives are formed naturally during tea processing, but they do not contribute to the color of tea infusions and thus are presumably left in the tea dregs. The present study aimed to investigate (i) the chlorophyll remnants in the pigments recovered from dregs of green and black teas and (ii) the antibacterial activity of pigments extracted from the tea dregs upon illumination using a light-emitting diode (LED) as the light source. Pigment analysis using high-performance liquid chromatography (HPLC) revealed the presence of main degradation products of chlorophylls, such as pheophytin and its epimers, pyropheophytin, and pheophorbides. In vitro assays demonstrated significant reductions in the number of viable bacteria in the presence of the pigments after 30 min of incubation with LED light irradiation. The descending order of bacterial susceptibility was Listeria monocytogenes > Staphylococcus aureus > Escherichia coli > Salmonella typhi. At an equivalent irradiation intensity, the blue and red LEDs could stimulate a comparable inactivation effect through photodynamic reactions. These findings demonstrated the valorization potential of tea dregs as a source of chlorophyll derivatives with visible light-induced antibacterial activity.
Collapse
Affiliation(s)
- Renny Indrawati
- Department of Food Science and Technology, Faculty of Agricultural Technology, Universitas Brawijaya, Malang 65145, Indonesia
- Ma Chung Research Center for Photosynthetic Pigments, Universitas Ma Chung, Malang 65151, Indonesia
- Chemistry Study Program, Faculty of Science and Technology, Universitas Ma Chung, Malang 65151, Indonesia
| | - Elok Zubaidah
- Department of Food Science and Technology, Faculty of Agricultural Technology, Universitas Brawijaya, Malang 65145, Indonesia
| | - Aji Sutrisno
- Department of Food Science and Technology, Faculty of Agricultural Technology, Universitas Brawijaya, Malang 65145, Indonesia
| | - Leenawaty Limantara
- Center for Urban Studies, Universitas Pembangunan Jaya, South Tangerang 15413, Indonesia
| | - Melisa Megawati Yusuf
- Chemistry Study Program, Faculty of Science and Technology, Universitas Ma Chung, Malang 65151, Indonesia
| | - Tatas Hardo Panintingjati Brotosudarmo
- Ma Chung Research Center for Photosynthetic Pigments, Universitas Ma Chung, Malang 65151, Indonesia
- Chemistry Study Program, Faculty of Science and Technology, Universitas Ma Chung, Malang 65151, Indonesia
| |
Collapse
|
13
|
Ganss C, Glanz A, Glanz T, Schlueter N, Ruf S. Red fluorescence of plaque in the dentition-a comparison of Quantitative Light-induced Fluorescence-Digital (QLF-D) images and conventional images of disclosed plaque. Photodiagnosis Photodyn Ther 2020; 32:102063. [DOI: 10.1016/j.pdpdt.2020.102063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 09/28/2020] [Accepted: 10/09/2020] [Indexed: 11/26/2022]
|
14
|
Rocha MP, Santos MS, Rodrigues PLF, Araújo TSD, de Oliveira JM, Rosa LP, Bagnato VS, da Silva FC. Photodynamic therapry with curcumin in the reduction of enterococcus faecalis biofilm in bone cavity: rMicrobiological and spectral fluorescense analysis. Photodiagnosis Photodyn Ther 2020; 33:102084. [PMID: 33176181 DOI: 10.1016/j.pdpdt.2020.102084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/18/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Antimicrobial photodynamic therapy (PDT) has emerged as a therapeutic strategy to conventional procedures using antibiotics. OBJECTIVE To evaluate the antimicrobial effectiveness of PDT using blue light emitting diode (LED) associated with curcumin on biofilms of Enterococcus faecalis in bovine bone cavities and also to analyze the presence of these biofilms through spectral fluorescence. MATERIALS AND METHODS Standardized suspensions of E. faecalis (ATCC 29212) were incubated in artificial bone cavities for 14 days at 36 °C ± 1 °C for biofilm formation. The test specimens were distributed among the four experimental groups (n = 10): L-C- (control), L + C- (LED for 5 min), L-C+ (curcumin for 5 min) and L + C+ (PDT). Aliquots were collected from the bone cavities after treatments and seeded on BHI agar for 24 h at 36 °C ± 1 °C for CFU count. Before and after each treatment the specimens were submitted to spectral fluorescence, whose images were compared in the Image J program. The log10 CFU/mL results were submitted to the Kruskal-Wallis test (5%) and the biofilm fluorescence spectroscopy results were submitted to the Wilcoxon test (5%). RESULTS All treatments presented statistical difference when compared to the control, and PDT was responsible for the largest reduction (1.92 log10 CFU/mL). There was a reduction in the fluorescence emitted after the treatments, with greater statistical difference in the PDT group. CONCLUSION PDT was efficient in the reduction of E. faecalis biofilms. In all groups post treatment there was a significant reduction of biofilms in the fluorescence spectroscopy images with greater reduction in the PDT group.
Collapse
Affiliation(s)
- Marisol Porto Rocha
- Multidisciplinary Institute in Health, Federal University of Bahia - UFBA, Brazil.
| | - Mariana Sousa Santos
- Multidisciplinary Institute in Health, Federal University of Bahia - UFBA, Brazil.
| | | | | | | | - Luciano Pereira Rosa
- Multidisciplinary Institute in Health, Federal University of Bahia - UFBA, Brazil.
| | | | | |
Collapse
|
15
|
Pereira LM, Estevam LR, da Silva MF, Pinheiro SL. Polyacrylic Acid with Methylene Blue Dye as a Sensitizing Agent for Photodynamic Therapy to Reduce Streptococcus mutans in Dentinal Caries. Photobiomodul Photomed Laser Surg 2020; 38:687-693. [PMID: 32758049 DOI: 10.1089/photob.2019.4736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Objective: To evaluate 11.5% polyacrylic acid (PA) containing 0.3% methylene blue (MB) dye as a photosensitizer for photodynamic therapy (PDT) of carious dentin. Methods: One hundred twenty molars were selected and the dentin was exposed for cariogenic challenge, where the molars were placed in brain heart infusion medium containing a standard strain of Streptococcus mutans (ATCC). Samples were randomly divided into eight groups (n = 15): S: saline, PA, MB: MB 0.3%, PA+MB: PA containing 0.3% MB + LLL: irradiation with low-level laser, PDT (MB): MB 0.3% + laser, PDT (PA): PA + laser, and PDT (PA+MB): PA containing 0.3% MB + laser. Carious dentin was collected before and after exposure to S. mutans. All samples of carious dentin were homogenized, diluted, and seeded in mitis salivarius bacitracin medium, and the cultures were incubated at 37°C for 15 days in anaerobic jars. The Wilcoxon test was used for analysis. Results: The percent microbial reduction achieved with each treatment was as follows: PDT (MB), 53.62%; PDT (PA+MB), 50.47%; PDT (PA), 46.73%; PA, 38.51%; MB, 19.75%; PA+MB, 17.18%; LLL, 12.83%; S, 5.99%. The greatest reductions in S. mutans growth occurred with PDT (MB), PDT (PA+MB), and PDT (PA) when compared to the S group (p = 0.0002, 0.0023, and 0.0232, respectively). Conclusions: PA containing 0.3% MB can be used as a photosensitizer for PDT to reduce S. mutans burden in carious dentin.
Collapse
Affiliation(s)
- Leticia Martins Pereira
- Postgraduate Program in Health Sciences, Center for Life Sciences, Pontifical Catholic University of Campinas (PUC Campinas), Campinas, Brazil
| | - Lorena Rodriguez Estevam
- Postgraduate Program in Health Sciences, Center for Life Sciences, Pontifical Catholic University of Campinas (PUC Campinas), Campinas, Brazil
| | - Mariana Franco da Silva
- Postgraduate Program in Health Sciences, Center for Life Sciences, Pontifical Catholic University of Campinas (PUC Campinas), Campinas, Brazil
| | - Sérgio Luiz Pinheiro
- Postgraduate Program in Health Sciences, Center for Life Sciences, Pontifical Catholic University of Campinas (PUC Campinas), Campinas, Brazil
| |
Collapse
|
16
|
|
17
|
Bumah VV, Morrow BN, Cortez PM, Bowman CR, Rojas P, Masson-Meyers DS, Suprapto J, Tong WG, Enwemeka CS. The importance of porphyrins in blue light suppression of Streptococcus agalactiae. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 212:111996. [PMID: 32863128 DOI: 10.1016/j.jphotobiol.2020.111996] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/06/2020] [Accepted: 08/12/2020] [Indexed: 02/08/2023]
Abstract
It is well documented that blue light absorption by bacterial chromophores triggers downstream production of reactive oxygen species (ROS), which in turn results in bacterial cell death. To elucidate the importance of chromophores in the bactericidal effect of blue light, and to determine whether blue light absorption per se or the presence of porphyrins known to engender ROS is crucial in blue light treatment, we studied the effect of 450 nm pulsed light on Streptococcus agalactiae, also known as Group B Streptococcus (GBS) strain COH1. GBS does not synthesize porphyrins but has a blue light-absorbing chromophore, granadaene. We irradiated planktonic cultures of GBS with or without exogenous chromophore supplementation using either protoporphyrin IX (PPIX), coproporphyrin III (CPIII), Nicotinamide adenine dinucleotide (NAD), reduced nicotinamide adenine dinucleotide (NADH), Flavin adenine dinucleotide (FAD), or Flavin mononucleotide (FMN). Quantification of surviving bacterial colonies, presented as percent survival and CFU/mL (log10), showed that (1) 450 nm blue light does not suppress the growth of GBS, even though its endogenous chromophore, granadaene, absorbs light in the 450 nm spectrum. (2) The addition of either of the two exogenous porphyrins, PPIX or CPIII, significantly suppressed GBS, indicating the importance of porphyrins in the antimicrobial action of blue light. (3) Adding exogenous FMN or FAD, two known absorbers of 450 nm light, minimally potentiated the bactericidal effect of blue light, again confirming that mere absorption of blue light by chromophores does not necessarily result in bacterial suppression. (4) Irradiation of GBS with or without NAD+ or NADH supplementation-two weak absorbers of 450 nm light-minimally suppressed GBS, indicating that a blue light-absorbing chromophore is essential for the bactericidal action of blue light. (5) Collectively, these findings show that in addition to the presence of a blue light-absorbing chromophore in bacteria, a chromophore with the right metabolic machinery and biochemical structure, capable of producing ROS, is necessary for 450 nm blue light to suppress GBS.
Collapse
Affiliation(s)
- Violet Vakunseh Bumah
- Department of Chemistry and Biochemistry, College of Sciences, 5500 Campanile Dr, San Diego, CA 92182, USA; College of Health and Human Services, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182, USA.
| | | | | | | | - Paulina Rojas
- Department of Biology, 5500 Campanile Dr, San Diego, CA 92182. USA
| | - Daniela Santos Masson-Meyers
- College of Health and Human Services, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182, USA; Marquette University School of Dentistry, 1801 W Wisconsin Ave, Milwaukee, WI 53233, USA
| | - James Suprapto
- Department of Chemistry and Biochemistry, College of Sciences, 5500 Campanile Dr, San Diego, CA 92182, USA.
| | - William G Tong
- Department of Chemistry and Biochemistry, College of Sciences, 5500 Campanile Dr, San Diego, CA 92182, USA.
| | - Chukuka Samuel Enwemeka
- College of Health and Human Services, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182, USA.
| |
Collapse
|
18
|
Kielmann M, Flanagan KJ, Senge MO. Targeted Synthesis of Regioisomerically Pure Dodecasubstituted Type I Porphyrins through the Exploitation of Peri-interactions. J Org Chem 2020; 85:7603-7610. [PMID: 32393039 DOI: 10.1021/acs.joc.0c00798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A targeted synthesis of dodecasubstituted type I porphyrins that utilizes the reaction of unsymmetrical 3,4-difunctionalized pyrroles and sterically demanding aldehydes was developed. This way, type I porphyrins could be obtained as the only type isomers, likely due to a minimization of the steric strain arising from peri-interactions. Uniquely, this method does not depend on lengthy precursor syntheses, the separation of isomers, or impractical limitations of the scale. In addition, single-crystal X-ray analysis was used to elucidate the structural features of the macrocycles.
Collapse
Affiliation(s)
- Marc Kielmann
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Keith J Flanagan
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Mathias O Senge
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| |
Collapse
|
19
|
Morici P, Battisti A, Tortora G, Menciassi A, Checcucci G, Ghetti F, Sgarbossa A. The in vitro Photoinactivation of Helicobacter pylori by a Novel LED-Based Device. Front Microbiol 2020; 11:283. [PMID: 32153551 PMCID: PMC7047934 DOI: 10.3389/fmicb.2020.00283] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/07/2020] [Indexed: 12/22/2022] Open
Abstract
The rise of antibiotic resistance is the main cause for the failure of conventional antibiotic therapy of Helicobacter pylori infection, which is often associated with severe gastric diseases, including gastric cancer. In the last years, alternative non-pharmacological approaches have been considered in the treatment of H. pylori infection. Among these, antimicrobial PhotoDynamic Therapy (aPDT), a light-based treatment able to photoinactivate a wide range of bacteria, viruses, fungal and protozoan parasites, could represent a promising therapeutic strategy. In the case of H. pylori, aPDT can exploit photoactive endogenous porphyrins, such as protoporphyrin IX and coproporphyrin I and III, to induce photokilling, without any other exogenous photosensitizers. With the aim of developing an ingestible LED-based robotic pill for minimally invasive intragastric treatment of H. pylori infection, it is crucial to determine the best illumination parameters to activate the endogenous photosensitizers. In this study the photokilling effect on H. pylori has been evaluated by using a novel LED-based device, designed for testing the appropriate LEDs for the pill and suitable to perform in vitro irradiation experiments. Exposure to visible light induced bacterial photokilling most effectively at 405 nm and 460 nm. Sub-lethal light dose at 405 nm caused morphological changes on bacterial surface indicating the cell wall as one of the main targets of photodamage. For the first time endogenous photosensitizing molecules other than porphyrins, such as flavins, have been suggested to be involved in the 460 nm H. pylori photoinactivation.
Collapse
Affiliation(s)
- Paola Morici
- Nanoscience Institute, CNR and NEST, Scuola Normale Superiore, Pisa, Italy
| | - Antonella Battisti
- Nanoscience Institute, CNR and NEST, Scuola Normale Superiore, Pisa, Italy
| | - Giuseppe Tortora
- The BioRobotics Institute, Polo Sant'Anna Valdera, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Arianna Menciassi
- The BioRobotics Institute, Polo Sant'Anna Valdera, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Giovanni Checcucci
- Nanoscience Institute, CNR and NEST, Scuola Normale Superiore, Pisa, Italy
| | - Francesco Ghetti
- Nanoscience Institute, CNR and NEST, Scuola Normale Superiore, Pisa, Italy
| | | |
Collapse
|
20
|
Akifusa S, Isobe A, Kibata K, Oyama A, Oyama H, Ariyoshi W, Nishihara T. Comparison of dental plaque reduction after use of electric toothbrushes with and without QLF-D-applied plaque visualization: a 1-week randomized controlled trial. BMC Oral Health 2020; 20:4. [PMID: 32008572 PMCID: PMC6996165 DOI: 10.1186/s12903-019-0982-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/05/2019] [Indexed: 12/01/2022] Open
Abstract
Background To evaluate the efficacy of a newly developed electric toothbrush in reducing dental plaque via a quantitative light-induced fluorescence-digital (QLF-D)-applied visualisation system in the brush head. Methods Participants included 20 adults aged 19 to 28 years. Participants were randomly assigned either (i) an electric toothbrush with a monitor to visualise red-fluorescent dental plaque via a camera built into the brush head (monitor usage group, n = 10) or (ii) an electric toothbrush without a monitor (monitor-non-use group, n = 10). The amount of dental plaque was assessed by personal hygiene performance (PHP) at baseline and 1 week later. Results In the monitor-usage group, PHP score was significantly lower at the 1-week follow-up than at baseline (6 vs 16; range, 0–12 vs 13–21; P = 0.029). This change was not observed in the monitor-non-use group (14 vs 13; range, 6–21 vs 2–26; P = 0.778). After 1 week, the change in PHP scores in the monitor usage group was significantly greater than that in the monitor non-use group (− 10 vs 0; range, − 21 to 9 vs − 8 to 16; P = 0.021). Conclusions Our results clearly demonstrate that brushing teeth while looking at a monitor that depicts red-autofluorescent dental plaque via application of QLF-D improved the efficacy of dental-plaque removal relative to brushing teeth without a monitor. Trial registration Trial registration number: UMIN000033699. Name of registry: Study on effect of new devise for oral care on dental plaque clearance. Date of registration: 8th September 2018. Status of registration: Completed.
Collapse
Affiliation(s)
- Sumio Akifusa
- School of Oral Health Sciences, Faculty of Dentistry, Kyushu Dental University, 2-6-1, Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka, 803-8580, Japan.
| | - Ayaka Isobe
- School of Oral Health Sciences, Faculty of Dentistry, Kyushu Dental University, 2-6-1, Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Kanako Kibata
- School of Oral Health Sciences, Faculty of Dentistry, Kyushu Dental University, 2-6-1, Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Akinori Oyama
- HA-PPY Co, Ltd., 1041-57, Tsuruhata-cho, Kita-ku, Kumamoto, 861-5513, Japan
| | - Hiroko Oyama
- HA-PPY Co, Ltd., 1041-57, Tsuruhata-cho, Kita-ku, Kumamoto, 861-5513, Japan
| | - Wataru Ariyoshi
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, 2-6-1, Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Tatsuji Nishihara
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, 2-6-1, Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka, 803-8580, Japan
| |
Collapse
|
21
|
Bumah VV, Masson-Meyers DS, Tong W, Castel C, Enwemeka CS. Optimizing the bactericidal effect of pulsed blue light on Propionibacterium acnes - A correlative fluorescence spectroscopy study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 202:111701. [DOI: 10.1016/j.jphotobiol.2019.111701] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 01/20/2023]
|
22
|
Kang SM, de Josselin de Jong E, Higham SM, Hope CK, Kim BI. Fluorescence fingerprints of oral bacteria. JOURNAL OF BIOPHOTONICS 2020; 13:e201900190. [PMID: 31654475 DOI: 10.1002/jbio.201900190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
The rapid detection and identification of microorganisms is one of the most important factors in many cases of ill health. The purpose of this study was to determine the fluorescence characteristics of seven oral bacteria using emission spectra with the aim of distinguishing between the bacteria, and to compare fluorescence imaging methods for the direct assessment of oral bacteria. Fluorescence images of each bacterium were obtained under a 405-nm light source using a two-filter system. The emissions of all samples were measured with a fluorescence spectrometer. The complete fluorescence data set collected for each sample employed a three-dimensional data cube. The differences in the autofluorescence characteristics of the seven oral bacteria were determined by principal components analysis (PCA). The fluorescence images of the oral bacteria varied with the genus and the filter system. The three-dimensional excitation-emission matrix fluorescence spectra exhibited distinctive fluorescence features associated with intracellular fluorophores. The seven bacteria could be clearly differentiated on the PCA score plot. The findings of this study indicate that oral bacteria can be identified based on their autofluorescence characteristics. Fluorescence spectroscopy coupled with PCA can be used to detect and classify oral bacteria.
Collapse
Affiliation(s)
- Si-Mook Kang
- Department of Preventive Dentistry and Public Oral Health, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Elbert de Josselin de Jong
- Department of Preventive Dentistry and Public Oral Health, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Department of Health Services Research, University of Liverpool, Liverpool, UK
- Inspektor Research Systems BV, Amsterdam, the Netherlands
| | - Susan M Higham
- Department of Health Services Research, University of Liverpool, Liverpool, UK
| | - Christopher K Hope
- Department of Health Services Research, University of Liverpool, Liverpool, UK
| | - Baek-Il Kim
- Department of Preventive Dentistry and Public Oral Health, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
| |
Collapse
|
23
|
Felix Gomez GG, Lippert F, Ando M, Zandona AF, Eckert GJ, Gregory RL. Photoinhibition of Streptococcus mutans Biofilm-Induced Lesions in Human Dentin by Violet-Blue Light. Dent J (Basel) 2019; 7:dj7040113. [PMID: 31835833 PMCID: PMC6960986 DOI: 10.3390/dj7040113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/29/2019] [Accepted: 11/28/2019] [Indexed: 01/13/2023] Open
Abstract
This in vitro study determined the effectiveness of violet-blue light on Streptococcus mutans (UA159) biofilm induced dentinal lesions. Biofilm was formed on human dentin specimens in a 96-well microtiter plate and incubated for 13 h in the presence of tryptic soy broth (TSB) or TSB supplemented with 1% sucrose (TSBS). Violet-blue light (405 nm) from quantitative light-induced fluorescence (QLFTM) was used to irradiate the biofilm. Supernatant liquid was removed, and the biofilm was irradiated continuously with QLF for 5 min twice daily with an interval of 6 h for 5 d, except with one treatment on the final day. Colony forming units (CFU) of the treated biofilm, changes in fluorescence (∆F; QLF-Digital BiluminatorTM), lesion depth (L), and integrated mineral loss (∆Z; both transverse microradiography) were quantified at the end of the fifth day. Statistical analysis used analysis of variance (ANOVA), testing at a 5% significance level. In the violet-blue light irradiated groups, there was a significant reduction (p < 0.05) of bacterial viability (CFU) of S. mutans with TSB and TSBS. Violet-blue light irradiation resulted in the reduction of ∆F and L of the dentinal surface with TSBS. These results indicate that violet-blue light has the capacity to reduce S. mutans cell numbers.
Collapse
Affiliation(s)
- Grace Gomez Felix Gomez
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN 46202, USA;
| | - Frank Lippert
- Department of Cariology, Operative Dentistry and Dental Public Health, Indiana University School of Dentistry, Indianapolis, IN 46202, USA; (F.L.); (M.A.)
| | - Masatoshi Ando
- Department of Cariology, Operative Dentistry and Dental Public Health, Indiana University School of Dentistry, Indianapolis, IN 46202, USA; (F.L.); (M.A.)
| | - Andrea F. Zandona
- Department of Comprehensive Care, Tufts School of Dental Medicine, Boston, MA 02111, USA;
| | - George J. Eckert
- Department of Biostatistics, Indiana University, Indianapolis, IN 46202, USA
| | - Richard L. Gregory
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN 46202, USA;
- Correspondence: ; Tel.: +1-317-274-9949
| |
Collapse
|
24
|
Hoenes K, Wenzel U, Spellerberg B, Hessling M. Photoinactivation Sensitivity of
Staphylococcus carnosus
to Visible‐light Irradiation as a Function of Wavelength. Photochem Photobiol 2019; 96:156-169. [DOI: 10.1111/php.13168] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/16/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Katharina Hoenes
- Institute of Medical Engineering and Mechatronics Ulm University of Applied Sciences Ulm Germany
| | - Ulla Wenzel
- Institute of Medical Engineering and Mechatronics Ulm University of Applied Sciences Ulm Germany
| | | | - Martin Hessling
- Institute of Medical Engineering and Mechatronics Ulm University of Applied Sciences Ulm Germany
| |
Collapse
|
25
|
Wang Y, Ferrer-Espada R, Baglo Y, Gu Y, Dai T. Antimicrobial Blue Light Inactivation of Neisseria gonorrhoeae: Roles of Wavelength, Endogenous Photosensitizer, Oxygen, and Reactive Oxygen Species. Lasers Surg Med 2019; 51:815-823. [PMID: 31157931 DOI: 10.1002/lsm.23104] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND OBJECTIVES The aim of this study was to investigate the efficacy, safety, and mechanism of action of antimicrobial blue light (aBL) for the inactivation of Neisseria gonorrhoeae, the etiological agent of gonorrhea. STUDY DESIGN/MATERIALS AND METHODS The susceptibilities of N. gonorrhoeae (ATCC 700825) in planktonic suspensions to aBL at 405- and 470-nm wavelengths were compared. The roles of oxygen in the anti-gonococcal activity of aBL were studied by examining the effects of hypoxic condition (blowing N2 ) on the anti-gonococcal efficiency of 405-nm aBL. The presence, identification, and quantification of endogenous photosensitizers in N. gonorrhoeae cells and human vaginal epithelial cells (VK2/E6E7 cells) were determined using fluorescence spectroscopy and ultra-performance liquid chromatography (UPLC). Finally, the selectivity of aBL inactivation of N. gonorrhoeae over the host cells were investigated by irradiating the co-cultures of N. gonorrhoeae and human vaginal epithelial cells using 405-nm aBL. RESULTS About 3.12-log10 reduction of bacterial colony forming units (CFU) was achieved by 27 J/cm 2 exposure at 405 nm, while about 3.70-log10 reduction of bacterial CFU was achieved by 234 J/cm2 exposure at 470 nm. The anti-gonococcal efficacy of 405-nm aBL was significantly suppressed under hypoxic condition. Spectroscopic and UPLC analyses revealed the presence of endogenous porphyrins and flavins in N. gonorrhoeae. The concentrations of endogenous photosensitizers in N. gonorrhoeae (ATCC 700825) cells were more than 10 times higher than those in the VK2/E6E7 cells. In the co-cultures of N. gonorrhoeae and VK2/E6E7 cells, 405-nm aBL at 108 J/cm2 preferentially inactivated N. gonorrhoeae cells while sparing the vaginal epithelial cells. CONCLUSIONS aBL at 405-nm wavelength is more effective than 470-nm wavelength in inactivating N. gonorrhoeae while sparing the vaginal epithelial cells. Reactive oxygen species generated from the photochemical reactions between aBL and endogenous photosensitizers play a vital role in the anti-gonococcal activity of 405-nm aBL. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ying Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts, 02114.,Department of Laser Medicine, Chinese PLA General Hospital, Medical School of Chinese PLA, 28 Fuxing Road, 100853, Beijing, China
| | - Raquel Ferrer-Espada
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts, 02114.,Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Charlestown, Massachusetts, 02129
| | - Yan Baglo
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts, 02114
| | - Ying Gu
- Department of Laser Medicine, Chinese PLA General Hospital, Medical School of Chinese PLA, 28 Fuxing Road, 100853, Beijing, China
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts, 02114.,Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Charlestown, Massachusetts, 02129
| |
Collapse
|
26
|
Rocha ER, Bergonia HA, Gerdes S, Jeffrey Smith C. Bacteroides fragilis requires the ferrous-iron transporter FeoAB and the CobN-like proteins BtuS1 and BtuS2 for assimilation of iron released from heme. Microbiologyopen 2019; 8:e00669. [PMID: 29931811 PMCID: PMC6460266 DOI: 10.1002/mbo3.669] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/13/2018] [Accepted: 05/07/2018] [Indexed: 12/17/2022] Open
Abstract
The intestinal commensal and opportunistic anaerobic pathogen Bacteroides fragilis has an essential requirement for both heme and free iron to support growth in extraintestinal infections. In the absence of free iron, B. fragilis can utilize heme as the sole source of iron. However, the mechanisms to remove iron from heme are not completely understood. In this study, we show that the inner membrane ferrous iron transporter ∆feoAB mutant strain is no longer able to grow with heme as the sole source of iron. Genetic complementation with the feoAB gene operon completely restored growth. Our data indicate that iron is removed from heme in the periplasmic space, and the released iron is transported by the FeoAB system. Interestingly, when B. fragilis utilizes iron from heme, it releases heme-derived porphyrins by a dechelatase activity which is upregulated under low iron conditions. This is supported by the findings showing that formation of heme-derived porphyrins in the ∆feoAB mutant and the parent strain increased 30-fold and fivefold (respectively) under low iron conditions compared to iron replete conditions. Moreover, the btuS1 btuS2 double-mutant strain (lacking the predicted periplasmic, membrane anchored CobN-like proteins) also showed growth defect with heme as the sole source of iron, suggesting that BtuS1 and BtuS2 are involved in heme-iron assimilation. Though the dechelatase mechanism remains uncharacterized, assays performed in bacterial crude extracts show that BtuS1 and BtuS2 affect the regulation of the dechelatase-specific activities in an iron-dependent manner. These findings suggest that the mechanism to extract iron from heme in Bacteroides requires a group of proteins, which spans the periplasmic space to make iron available for cellular functions.
Collapse
Affiliation(s)
- Edson R. Rocha
- Department of Microbiology and ImmunologyBrody School of MedicineGreenvilleNorth Carolina
| | - Hector A. Bergonia
- Iron and Heme CoreDivision of HematologyUniversity of Utah School of MedicineSalt Lake CityUtah
| | | | - Charles Jeffrey Smith
- Department of Microbiology and ImmunologyBrody School of MedicineGreenvilleNorth Carolina
| |
Collapse
|
27
|
Lashkari SM, Kariminezhad H, Amani H, Mataji P, Rahimnejad M. Introduction of 5-aminolevulinic acid as a theranostics agent in dentistry. Photodiagnosis Photodyn Ther 2019; 25:336-343. [DOI: 10.1016/j.pdpdt.2019.01.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 11/05/2018] [Accepted: 01/16/2019] [Indexed: 10/27/2022]
|
28
|
Lee MA, Kang SM, Kim SY, Kim JS, Kim JB, Jeong SH. Fluorescence change of Fusobacterium nucleatum due to Porphyromonas gingivalis. J Microbiol 2018; 56:628-633. [PMID: 30141157 DOI: 10.1007/s12275-018-7515-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 05/29/2018] [Accepted: 05/29/2018] [Indexed: 12/14/2022]
Abstract
The aim of this study was to measure changes in the fluorescence of Fusobacterium nucleatum interacting with Porphyromonas gingivalis for excitation with blue light at 405-nm. P. gingivalis was mono- and co-cultivated in close proximity with F. nucleatum. The fluorescence of the bacterial colonies was photographed using a QLF-D (Quantitative Light-induced Fluorescence-Digital) Biluminator camera system with a 405 nm light source and a specific filter. The red, green and blue intensities of fluorescence images were analyzed using the image analysis software. A fluorescence spectrometer was used to detect porphyrin synthesized by each bacterium. F. nucleatum, which emitted green fluorescence in single cultures, showed intense red fluorescence when it was grown in close proximity with P. gingivalis. F. nucleatum co-cultivated with P. gingivalis showed the same pattern of fluorescence peaks as for protoporphyrin IX in the red part of the spectrum. We conclude that the green fluorescence of F. nucleatum can change to red fluorescence in the presence of adjacent co-cultured with P. gingivalis, indicating that the fluorescence character of each bacterium might depend on the presence of other bacteria.
Collapse
Affiliation(s)
- Min-Ah Lee
- Department of Preventive and Community Dentistry, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Si-Mook Kang
- Department of Preventive Dentistry & Public Oral Health, College of Dentistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Se-Yeon Kim
- Department of Preventive and Community Dentistry, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Ji-Soo Kim
- Department of Preventive and Community Dentistry, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Jin-Bom Kim
- Department of Preventive and Community Dentistry, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Seung-Hwa Jeong
- Department of Preventive and Community Dentistry, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan, 50612, Republic of Korea.
| |
Collapse
|
29
|
Pinheiro SL, Segatti B, Pucca DS, Dutra PT. Dental acid etchant as a sensitizing agent in photodynamic therapy to reduce S. mutans in dentinal carious lesions. Lasers Med Sci 2018; 34:305-309. [PMID: 30027423 DOI: 10.1007/s10103-018-2590-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 07/13/2018] [Indexed: 12/27/2022]
Abstract
The study aims to assess the utility of dental acid etchant containing 37% phosphoric acid and methylene blue dye (DAE) as a sensitizing agent for photodynamic therapy (PDT) to reduce Streptococci mutans in dentinal caries. Forty-five permanent third molars were sectioned and the coronal dentin exposed. A cariogenic challenge was performed using brain-heart infusion (BHI) supplemented with 0.5% yeast extract, 1% glucose, 1% sucrose, and S. mutans ATCC 25175 standardized to 0.5 McFarland turbidity. Specimens were incubated in anaerobic jars at 37 °C for 15 days. During this period, BHI broth was renewed every 24 h. After 15 days, specimens were randomly divided into three groups (n = 15): DAE, application of dental acid etchant containing 37% phosphoric acid and methylene blue dye for 15 s; LLL, application of low-level laser (wavelength 660 nm, energy 4 J/cm2, power 5 W) for 15 s; and PDT, application of DAE for 15 s followed by LLL irradiation (660 nm, 4 J/cm2, 5 W). Carious tissue from each specimen was collected before and after the applications. Five decimal dilutions were performed and the resulting solution was seeded in mitis-salivarius-bacitracin agar. Plates were incubated in anaerobic jars at 37 °C for 48 h. Analysis of variance (ANOVA) with post hoc Tukey's test was used to compare total S. mutans counts. Significant reductions in S. mutans were observed after DAE application (40.70%, p < 0.0001), LLL (12.35%, p = 0.0036), and PDT (55.22%, p < 0.0001). Dental acid etchant containing 37% phosphoric acid and methylene blue dye can be used as a photosensitizing agent for PDT to reduce S. mutans burden in dentinal caries.
Collapse
Affiliation(s)
- Sérgio Luiz Pinheiro
- Department of Dentistry, Pontifícia Universidade Católica de Campinas (PUC-Campinas), Av. John Boyd Dunlop, S/N°, Campinas, SP, 13086-900, Brazil.
| | - Bruna Segatti
- Department of Dentistry, Pontifícia Universidade Católica de Campinas (PUC-Campinas), Av. John Boyd Dunlop, S/N°, Campinas, SP, 13086-900, Brazil
| | - Daniel Sartorelli Pucca
- Department of Dentistry, Pontifícia Universidade Católica de Campinas (PUC-Campinas), Av. John Boyd Dunlop, S/N°, Campinas, SP, 13086-900, Brazil
| | - Priscila Tessaro Dutra
- Department of Dentistry, Pontifícia Universidade Católica de Campinas (PUC-Campinas), Av. John Boyd Dunlop, S/N°, Campinas, SP, 13086-900, Brazil
| |
Collapse
|
30
|
McClary JS, Boehm AB. Transcriptional Response of Staphylococcus aureus to Sunlight in Oxic and Anoxic Conditions. Front Microbiol 2018; 9:249. [PMID: 29599752 PMCID: PMC5863498 DOI: 10.3389/fmicb.2018.00249] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/31/2018] [Indexed: 12/20/2022] Open
Abstract
The transcriptional response of Staphylococcus aureus strain Newman to sunlight exposure was investigated under both oxic and anoxic conditions using RNA sequencing to gain insight into potential mechanisms of inactivation. S. aureus is a pathogenic bacterium detected at recreational beaches which can cause gastrointestinal illness and skin infections, and is of increasing public health concern. To investigate the S. aureus photostress response in oligotrophic seawater, S. aureus cultures were suspended in seawater and exposed to full spectrum simulated sunlight. Experiments were performed under oxic or anoxic conditions to gain insight into the effects of oxygen-mediated and non-oxygen-mediated inactivation mechanisms. Transcript abundance was measured after 6 h of sunlight exposure using RNA sequencing and was compared to transcript abundance in paired dark control experiments. Culturable S. aureus decayed following biphasic inactivation kinetics with initial decay rate constants of 0.1 and 0.03 m2 kJ−1 in oxic and anoxic conditions, respectively. RNA sequencing revealed that 71 genes had different transcript abundance in the oxic sunlit experiments compared to dark controls, and 18 genes had different transcript abundance in the anoxic sunlit experiments compared to dark controls. The majority of genes showed reduced transcript abundance in the sunlit experiments under both conditions. Three genes (ebpS, NWMN_0867, and NWMN_1608) were found to have the same transcriptional response to sunlight between both oxic and anoxic conditions. In the oxic condition, transcripts associated with porphyrin metabolism, nitrate metabolism, and membrane transport functions were increased in abundance during sunlight exposure. Results suggest that S. aureus responds differently to oxygen-dependent and oxygen-independent photostress, and that endogenous photosensitizers play an important role during oxygen-dependent indirect photoinactivation.
Collapse
Affiliation(s)
- Jill S McClary
- Civil and Environmental Engineering, Stanford University, Stanford, CA, United States
| | - Alexandria B Boehm
- Civil and Environmental Engineering, Stanford University, Stanford, CA, United States
| |
Collapse
|
31
|
Wang Y, Wang Y, Wang Y, Murray CK, Hamblin MR, Hooper DC, Dai T. Antimicrobial blue light inactivation of pathogenic microbes: State of the art. Drug Resist Updat 2017; 33-35:1-22. [PMID: 29145971 DOI: 10.1016/j.drup.2017.10.002] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/28/2017] [Accepted: 10/02/2017] [Indexed: 12/20/2022]
Abstract
As an innovative non-antibiotic approach, antimicrobial blue light in the spectrum of 400-470nm has demonstrated its intrinsic antimicrobial properties resulting from the presence of endogenous photosensitizing chromophores in pathogenic microbes and, subsequently, its promise as a counteracter of antibiotic resistance. Since we published our last review of antimicrobial blue light in 2012, there have been a substantial number of new studies reported in this area. Here we provide an updated overview of the findings from the new studies over the past 5 years, including the efficacy of antimicrobial blue light inactivation of different microbes, its mechanism of action, synergism of antimicrobial blue light with other angents, its effect on host cells and tissues, the potential development of resistance to antimicrobial blue light by microbes, and a novel interstitial delivery approach of antimicrobial blue light. The potential new applications of antimicrobial blue light are also discussed.
Collapse
Affiliation(s)
- Yucheng Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Cancer Center, Aviation General Hospital, Beijing, China; Department of Medical Oncology, Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China
| | - Ying Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Laser Medicine, Chinese PLA General Hospital, Beijing, China
| | - Yuguang Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Center of Digital Dentistry, School and Hospital of Stomatology, Peking University, Beijing, China
| | - Clinton K Murray
- Infectious Disease Service, San Antonio Military Medical Center, JBSA-Fort Sam Houston, TX, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David C Hooper
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
32
|
Battisti A, Morici P, Signore G, Ghetti F, Sgarbossa A. Compositional analysis of endogenous porphyrins from Helicobacter pylori. Biophys Chem 2017. [PMID: 28648894 DOI: 10.1016/j.bpc.2017.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Bacteria able to accumulate porphyrins can be inactivated by visible light irradiation thanks to the photosensitizing properties of this class of aromatic pigments (photodynamic therapy, PDT). Since the bacterial resistance to antibiotic is growing, PDT is becoming a valid alternative. In this context, the pathogen Helicobacter pylori (Hp) is a suitable target for PDT since it spontaneously produces and accumulates porphyrins. It is then important to understand the spectroscopic behavior of these endogenous species to exploit them as photosensitizers, thus improving the results given by the application of PDT in the treatment of Hp infections. In this work we extracted porphyrins from both a laboratory-adapted and a virulent strain of Hp, and we performed spectroscopic and chromatographic experiments to collect information about the composition and the spectrophotometric features of the extracts. The main components of the porphyrin mixtures were identified and their relative contribution to the global red fluorescence was examined.
Collapse
Affiliation(s)
- A Battisti
- Istituto Nanoscienze, CNR and NEST Scuola Normale Superiore, p.zza San Silvestro 12, 56127 Pisa, Italy.
| | - P Morici
- Istituto Nanoscienze, CNR and NEST Scuola Normale Superiore, p.zza San Silvestro 12, 56127 Pisa, Italy
| | - G Signore
- NEST Scuola Normale Superiore and Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, p.zza San Silvestro 12, 56127 Pisa, Italy
| | - F Ghetti
- Istituto Nanoscienze, CNR and NEST Scuola Normale Superiore, p.zza San Silvestro 12, 56127 Pisa, Italy
| | - A Sgarbossa
- Istituto Nanoscienze, CNR and NEST Scuola Normale Superiore, p.zza San Silvestro 12, 56127 Pisa, Italy
| |
Collapse
|
33
|
Fyrestam J, Bjurshammar N, Paulsson E, Mansouri N, Johannsen A, Östman C. Influence of culture conditions on porphyrin production in Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis. Photodiagnosis Photodyn Ther 2016; 17:115-123. [PMID: 27825899 DOI: 10.1016/j.pdpdt.2016.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 10/12/2016] [Accepted: 11/04/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Increasing antibiotic resistance among pathogens has raised the demands for new treatment methods such as antimicrobial photodynamic therapy (aPDT) and phototherapy (PT). Experiments for investigating the effects of these methods are often performed in vitro, but the procedures for cultivation of microbes vary between different studies. The aim of this study has been to elucidate how the profile of endogenously produced porphyrins differs by changing the variables of bacteria culturing conditions. METHODS Two oral pathogens, Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis, were selected as model organisms. The contents of porphyrins and heme in the bacteria were analysed with liquid chromatography-tandem mass spectrometry when bacteria was cultivated for different lengths of time (3-9 days), upon passaging as well as when growth medium were supplemented with or without horse blood. RESULTS Both porphyrin and heme content in A. actinomycetemcomitans are highly affected by the age of the culture, and that the porphyrin profiles changes during cultivation. When cultivated colonies of A. actinomycetemcomitans were passaged onto a new, fresh growth medium a large change in porphyrin content occurred. Additional porphyrins were detected; uroporphyrin and 7-carboxylporphyrin, and the total porphyrin content increased up to 28 times. When P. gingivalis was grown on blood containing medium higher concentrations of protoporphyrin IX (2.5 times) and heme (5.4 times) were quantified compared to bacteria grown without blood. CONCLUSIONS This study demonstrate that there is a need for more standardized culturing protocols when performing aPDT and PT experiments in vitro to avoid large variations in porphyrin profiles and concentrations, the aPDT/PT target compounds, depending on the culturing conditions.
Collapse
Affiliation(s)
- Jonas Fyrestam
- Department of Environmental Science and Analytical Chemistry, Division of Analytical and Toxicological Chemistry, Stockholm University, S-106 91 Stockholm, Sweden
| | - Nadja Bjurshammar
- Department of Dental Medicine, Karolinska Institutet, S-141 04 Huddinge, Sweden
| | - Elin Paulsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, S-750 07 Uppsala, Sweden
| | - Nesrine Mansouri
- Department of Environmental Science and Analytical Chemistry, Division of Analytical and Toxicological Chemistry, Stockholm University, S-106 91 Stockholm, Sweden
| | - Annsofi Johannsen
- Department of Dental Medicine, Karolinska Institutet, S-141 04 Huddinge, Sweden
| | - Conny Östman
- Department of Environmental Science and Analytical Chemistry, Division of Analytical and Toxicological Chemistry, Stockholm University, S-106 91 Stockholm, Sweden.
| |
Collapse
|