1
|
Abstract
Miniaturization is an important trend in modern analytical instrument development, including miniaturized gas chromatography and liquid chromatography, as well as micro bore columns and capillary-to-microfluidics-based platforms. Apart from the miniaturization of the separation column, which is the core part of a chromatographic system, other parts of the system, including the sampler, pumping system, gradient generation, and detection systems, have been miniaturized. Miniaturized liquid chromatography significantly reduces solvent and sample consumption while providing comparable or even better separation efficiency. When liquid chromatography is coupled with mass spectroscopy, a low flow rate can increase the ionization efficiency, leading to enhanced sensitivity of the mass spectrometer. In contrast, normal-scale liquid chromatography suffers from its relatively high volumetric flow rate, which challenges the scanning frequency of the mass spectrometer. On the other hand because of the small sample size, other detection strategies such as spectrometric methods cannot provide sufficient sensitivity and limits of detection. In this sense, mass spectrometry has become the detection method of choice for micro-scale liquid-phase chromatography. Miniaturized liquid chromatography can diminish sample dilution efficiently when extremely small amounts of samples are used. The main driving force for this miniaturization trend, especially in liquid-phase separations, is the desperate need for microscale analyses of biological and clinical samples, given these samples are precious and the sample size is usually very small. At present, microscale liquid-phase chromatography is the only method of choice for such small, precious, and highly informative samples. The miniaturization of liquid chromatography systems, especially chromatographic columns, would be advantageous to the modularization and integration of liquid chromatography instrumental systems. Chip liquid chromatography is an integration of chromatography columns, liquid control systems, and detection methods on a single microfluidic chip. Chip liquid chromatography is an excellent format for the miniaturization of liquid chromatography systems, and it has already attracted significant attention from academia and industry. However, this attempt is challenging, and great effort is required on fundamental techniques, such as the substrate material of the microfluidic chip, structure of the micro-chromatography column, fluid control method, and detection methods, in order to make the chips suitable for liquid chromatography. Currently, the major problem in chip liquid chromatography is that the properties of the chip substrate materials cannot meet the requirements for further miniaturization and integration of chip liquid chromatography. The strength of the existing chip substrate materials is generally below 60 MPa, and the material properties limit further advances in the miniaturization and integration of chromatographic chips. Therefore, new chip substrate materials and the standard of chip channel design such as channel size and channel structure should be the key for further development of chip liquid chromatography. Mainstream instrumentation companies as well as new start-up innovation companies are now undertaking efforts toward the development of microchip liquid chromatographic products. Agilent, the first instrumentation company that introduced commercial microchip liquid chromatographic columns to the market, has led this field. Apart from microchip-based columns, Agilent introduced trap columns for different kinds of biological molecules as well as gradient generation systems for microchip-based liquid phase chromatography. Recently, another start-up company introduced microchip columns based on the in situ microfabrication of the column bed rather than packing the column with a particulate material. Such developments in microfabrication may further propel the advancement of micro-scale liquid-phase chromatography to an unprecedented level, which is beyond the conventional components and materials employed in normal-scale liquid chromatography. This review introduces the recent research progress in microchip liquid chromatography technologies, and briefly discusses the current state of commercialization of microchips for liquid chromatography by major instrumentation companies.
Collapse
Affiliation(s)
- Hanrong WEN
- 厦门大学化学化工学院, 福建 厦门 361005
- College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jue ZHU
- 厦门大学化学化工学院, 福建 厦门 361005
- College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bo ZHANG
- 厦门大学化学化工学院, 福建 厦门 361005
- College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
2
|
Hartner NT, Raddatz CR, Thoben C, Piendl SK, Zimmermann S, Belder D. On-Line Coupling of Chip-Electrochromatography and Ion Mobility Spectrometry. Anal Chem 2020; 92:15129-15136. [PMID: 33143411 DOI: 10.1021/acs.analchem.0c03446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We report the first hyphenation of chip-electrochromatography (ChEC) with ion mobility spectrometry (IMS). This approach combines the separation power of two electrokinetically driven separation techniques, the first in liquid phase and the second in gas phase, with a label-free detection of the analytes. For achieving this, a microfluidic glass chip incorporating a monolithic separation column, a nanofluidic liquid junction for providing post-column electrical contact, and a monolithically integrated electrospray emitter was developed. This device was successfully coupled to a custom-built high-resolution drift tube IMS with shifted potentials. After proof-of-concept studies in which a mixture of five model compounds was analyzed in less than 80 s, this first ChEC-IMS system was applied to a more complex sample, the analysis of herbicides spiked in the wine matrix. The use of ChEC before IMS detection not only facilitated the peak allocation and increased the peak capacity but also enabled analyte quantification. As both, ChEC and IMS work at ambient conditions and are driven by high voltages, no bulky pumping systems are needed, neither for the hydrodynamic pumping of the mobile phase as in high-performance liquid chromatography nor for generating a vacuum system as in mass spectrometry. Accordingly, the approach has great potential as a portable analytical system for field analysis of complex mixtures.
Collapse
Affiliation(s)
- Nora T Hartner
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Christian-Robert Raddatz
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz University Hannover, Appelstraße 9A, 30167 Hannover, Germany
| | - Christian Thoben
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz University Hannover, Appelstraße 9A, 30167 Hannover, Germany
| | - Sebastian K Piendl
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Stefan Zimmermann
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz University Hannover, Appelstraße 9A, 30167 Hannover, Germany
| | - Detlev Belder
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| |
Collapse
|
3
|
Affiliation(s)
- Xilong Yuan
- Department of Chemistry, Queen's University , Kingston, Ontario K7L 3N6, Canada
| | - Richard D Oleschuk
- Department of Chemistry, Queen's University , Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
4
|
Pedde RD, Li H, Borchers CH, Akbari M. Microfluidic-Mass Spectrometry Interfaces for Translational Proteomics. Trends Biotechnol 2017; 35:954-970. [PMID: 28755975 DOI: 10.1016/j.tibtech.2017.06.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/05/2017] [Accepted: 06/09/2017] [Indexed: 12/29/2022]
Abstract
Interfacing mass spectrometry (MS) with microfluidic chips (μchip-MS) holds considerable potential to transform a clinician's toolbox, providing translatable methods for the early detection, diagnosis, monitoring, and treatment of noncommunicable diseases by streamlining and integrating laborious sample preparation workflows on high-throughput, user-friendly platforms. Overcoming the limitations of competitive immunoassays - currently the gold standard in clinical proteomics - μchip-MS can provide unprecedented access to complex proteomic assays having high sensitivity and specificity, but without the labor, costs, and complexities associated with conventional MS sample processing. This review surveys recent μchip-MS systems for clinical applications and examines their emerging role in streamlining the development and translation of MS-based proteomic assays by alleviating many of the challenges that currently inhibit widespread clinical adoption.
Collapse
Affiliation(s)
- R Daniel Pedde
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Rd., Victoria, BC, V8P 5C2, Canada; University of Victoria-Genome British Columbia Proteomics Centre, University of Victoria, 3101-4464 Markham St., Victoria, BC, V8Z 7X8, Canada
| | - Huiyan Li
- University of Victoria-Genome British Columbia Proteomics Centre, University of Victoria, 3101-4464 Markham St., Victoria, BC, V8Z 7X8, Canada
| | - Christoph H Borchers
- University of Victoria-Genome British Columbia Proteomics Centre, University of Victoria, 3101-4464 Markham St., Victoria, BC, V8Z 7X8, Canada; Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Rd., Victoria, BC, V8P 5C2, Canada; Gerald Bronfman Department of Oncology, McGill University, 5100 de Maisonneuve Blvd. West, Suite 720, Montreal, QC, H4A 3T2, Canada; Proteomics Centre, Jewish General Hospital, McGill University, 3755 Cote-Ste-Catherine Road, Montreal, QC, H3T 1E2, Canada.
| | - Mohsen Akbari
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Rd., Victoria, BC, V8P 5C2, Canada; Centre for Biomedical Research (CBR), University of Victoria, 3800 Finnerty Rd., Victoria, BC, V8P 5C2, Canada; Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Rd., Victoria, BC, V8P 5C2, Canada.
| |
Collapse
|
5
|
Scotti G, Nilsson SME, Haapala M, Pöhö P, Boije af Gennäs G, Yli-Kauhaluoma J, Kotiaho T. A miniaturised 3D printed polypropylene reactor for online reaction analysis by mass spectrometry. REACT CHEM ENG 2017. [DOI: 10.1039/c7re00015d] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The first miniaturised 3D printed polypropylene reactor with an integrated nanoelectrospray ionisation capillary and a stir bar for mass spectrometric online reaction monitoring.
Collapse
Affiliation(s)
- Gianmario Scotti
- Division of Pharmaceutical Chemistry and Technology
- Faculty of Pharmacy
- University of Helsinki
- Finland
| | - Sofia M. E. Nilsson
- Division of Pharmaceutical Chemistry and Technology
- Faculty of Pharmacy
- University of Helsinki
- Finland
| | - Markus Haapala
- Division of Pharmaceutical Chemistry and Technology
- Faculty of Pharmacy
- University of Helsinki
- Finland
| | - Päivi Pöhö
- Division of Pharmaceutical Chemistry and Technology
- Faculty of Pharmacy
- University of Helsinki
- Finland
| | - Gustav Boije af Gennäs
- Division of Pharmaceutical Chemistry and Technology
- Faculty of Pharmacy
- University of Helsinki
- Finland
| | - Jari Yli-Kauhaluoma
- Division of Pharmaceutical Chemistry and Technology
- Faculty of Pharmacy
- University of Helsinki
- Finland
| | - Tapio Kotiaho
- Division of Pharmaceutical Chemistry and Technology
- Faculty of Pharmacy
- University of Helsinki
- Finland
- Department of Chemistry
| |
Collapse
|
6
|
Zhu X, Liang Y, Weng Y, Chen Y, Jiang H, Zhang L, Liang Z, Zhang Y. Gold-Coated Nanoelectrospray Emitters Fabricated by Gravity-Assisted Etching Self-Termination and Electroless Deposition. Anal Chem 2016; 88:11347-11351. [DOI: 10.1021/acs.analchem.6b03422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Xudong Zhu
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yu Liang
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| | - Yejing Weng
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yuanbo Chen
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Hao Jiang
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Lihua Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| | - Zhen Liang
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| | - Yukui Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| |
Collapse
|
7
|
Dietze C, Schulze S, Ohla S, Gilmore K, Seeberger PH, Belder D. Integrated on-chip mass spectrometry reaction monitoring in microfluidic devices containing porous polymer monolithic columns. Analyst 2016; 141:5412-6. [PMID: 27373801 DOI: 10.1039/c6an01467d] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Chip-based microfluidics enable the seamless integration of different functions into single devices. Here, we present microfluidic chips containing porous polymer monolithic columns as a means to facilitate chemical transformations as well as both downstream chromatographic separation and mass spectrometric analysis. Rapid liquid phase lithography prototyping creates the multifunctional device economically.
Collapse
Affiliation(s)
- C Dietze
- Institut für Analytische Chemie, Universität Leipzig, Linnéstr. 3, D-04103 Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
8
|
Dietze C, Hackl C, Gerhardt R, Seim S, Belder D. Chip-based electrochromatography coupled to ESI-MS detection. Electrophoresis 2016; 37:1345-52. [DOI: 10.1002/elps.201500543] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/02/2016] [Accepted: 02/03/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Claudia Dietze
- Institute of Analytical Chemistry; University of Leipzig; Leipzig Germany
| | - Claudia Hackl
- Institute of Analytical Chemistry; University of Leipzig; Leipzig Germany
| | - Renata Gerhardt
- Institute of Analytical Chemistry; University of Leipzig; Leipzig Germany
| | - Stephan Seim
- Institute of Analytical Chemistry; University of Leipzig; Leipzig Germany
| | - Detlev Belder
- Institute of Analytical Chemistry; University of Leipzig; Leipzig Germany
| |
Collapse
|