1
|
Gondane P, Kumbhakarn S, Maity P, Kapat K. Recent Advances and Challenges in the Early Diagnosis and Treatment of Preterm Labor. Bioengineering (Basel) 2024; 11:161. [PMID: 38391647 PMCID: PMC10886370 DOI: 10.3390/bioengineering11020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
Preterm birth (PTB) is the primary cause of neonatal mortality and long-term disabilities. The unknown mechanism behind PTB makes diagnosis difficult, yet early detection is necessary for controlling and averting related consequences. The primary focus of this work is to provide an overview of the known risk factors associated with preterm labor and the conventional and advanced procedures for early detection of PTB, including multi-omics and artificial intelligence/machine learning (AI/ML)- based approaches. It also discusses the principles of detecting various proteomic biomarkers based on lateral flow immunoassay and microfluidic chips, along with the commercially available point-of-care testing (POCT) devices and associated challenges. After briefing the therapeutic and preventive measures of PTB, this review summarizes with an outlook.
Collapse
Affiliation(s)
- Prashil Gondane
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, India
| | - Sakshi Kumbhakarn
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, India
| | - Pritiprasanna Maity
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kausik Kapat
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, India
| |
Collapse
|
2
|
Verma N, Walia S, Pandya A. Micro/nanofluidic devices for DNA/RNA detection and separation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 186:85-107. [PMID: 35033291 DOI: 10.1016/bs.pmbts.2021.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The development and research have ramped up at a greater speed than ever in the field of diseases diagnosis. Still there is struggle in developing early detection techniques which uses complex biomolecules like RNA, DNA and proteins in order to detect diseases caused by bacteria, viruses or fungi. Until now separation techniques used before detection rely on traditional techniques like electrophoresis etc. which often require centralized services. Although efforts are made in developing devices that is capable enough on carrying out separation and detection based on microfluidic (MF) and nanofluidic (NF) or lab on chip. Hence, in this chapter, we have discussed about the advancement, limitations and future steps that needs to be taken to flourish the field of NF and MF for the detection and separation of nucleic acid.
Collapse
Affiliation(s)
- Nidhi Verma
- Department of Engineering and Physical Sciences, Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Sakshi Walia
- Department of Biological Sciences and Biotechnology, Institute of Advanced Research, Gandhinagar, India
| | - Alok Pandya
- Department of Engineering and Physical Sciences, Institute of Advanced Research, Gandhinagar, Gujarat, India.
| |
Collapse
|
3
|
Sesen M, Rowlands CJ. Thermally-actuated microfluidic membrane valve for point-of-care applications. MICROSYSTEMS & NANOENGINEERING 2021; 7:48. [PMID: 34567761 PMCID: PMC8433387 DOI: 10.1038/s41378-021-00260-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 02/22/2021] [Accepted: 03/17/2021] [Indexed: 05/08/2023]
Abstract
Microfluidics has enabled low volume biochemistry reactions to be carried out at the point-of-care. A key component in microfluidics is the microfluidic valve. Microfluidic valves are not only useful for directing flow at intersections but also allow mixtures/dilutions to be tuned real-time and even provide peristaltic pumping capabilities. In the transition from chip-in-a-lab to lab-on-a-chip, it is essential to ensure that microfluidic valves are designed to require less peripheral equipment and that they are transportable. In this paper, a thermally-actuated microfluidic valve is presented. The valve itself is fabricated with off-the-shelf components without the need for sophisticated cleanroom techniques. It is shown that multiple valves can be controlled and operated via a power supply and an Arduino microcontroller; an important step towards transportable microfluidic devices capable of carrying out analytical assays at the point-of-care. It is been calculated that a single actuator costs less than $1, this highlights the potential of the presented valve for scaling out. The valve operation is demonstrated by adjusting the ratio of a water/dye mixture in a continuous flow microfluidic chip with Y-junction channel geometry. The power required to operate one microfluidic valve has been characterised both theoretically and experimentally. Cyclical operation of the valve has been demonstrated for 65 h with 585 actuations. The presented valve is capable of actuating rectangular microfluidic channels of 500 μm × 50 μm with an expected temperature increase of up to 5 °C. The fastest actuation times achieved were 2 s for valve closing (heating) and 9 s for valve opening (cooling).
Collapse
Affiliation(s)
- Muhsincan Sesen
- Department of Bioengineering, Imperial College London, London, SW7 2AZ UK
| | | |
Collapse
|
4
|
DEP-on-a-Chip: Dielectrophoresis Applied to Microfluidic Platforms. MICROMACHINES 2019; 10:mi10060423. [PMID: 31238556 PMCID: PMC6630590 DOI: 10.3390/mi10060423] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/15/2019] [Accepted: 06/19/2019] [Indexed: 01/09/2023]
Abstract
Dielectric particles in a non-uniform electric field are subject to a force caused by a phenomenon called dielectrophoresis (DEP). DEP is a commonly used technique in microfluidics for particle or cell separation. In comparison with other separation methods, DEP has the unique advantage of being label-free, fast, and accurate. It has been widely applied in microfluidics for bio-molecular diagnostics and medical and polymer research. This review introduces the basic theory of DEP, its advantages compared with other separation methods, and its applications in recent years, in particular, focusing on the different electrode types integrated into microfluidic chips, fabrication techniques, and operation principles.
Collapse
|
5
|
Parker EK, Nielsen AV, Beauchamp MJ, Almughamsi HM, Nielsen JB, Sonker M, Gong H, Nordin GP, Woolley AT. 3D printed microfluidic devices with immunoaffinity monoliths for extraction of preterm birth biomarkers. Anal Bioanal Chem 2018; 411:5405-5413. [PMID: 30382326 DOI: 10.1007/s00216-018-1440-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/04/2018] [Accepted: 10/19/2018] [Indexed: 01/19/2023]
Abstract
Preterm birth (PTB) is defined as birth before the 37th week of pregnancy and results in 15 million early deliveries worldwide every year. Presently, there is no clinical test to determine PTB risk; however, a panel of nine biomarkers found in maternal blood serum has predictive power for a subsequent PTB. A significant step in creating a clinical diagnostic for PTB is designing an automated method to extract and purify these biomarkers from blood serum. Here, microfluidic devices with 45 μm × 50 μm cross-section channels were 3D printed with a built-in polymerization window to allow a glycidyl methacrylate monolith to be site-specifically polymerized within the channel. This monolith was then used as a solid support to attach antibodies for PTB biomarker extraction. Using these functionalized monoliths, it was possible to selectively extract a PTB biomarker, ferritin, from buffer and a human blood serum matrix. This is the first demonstration of monolith formation in a 3D printed microfluidic device for immunoaffinity extraction. Notably, this work is a crucial first step toward developing a 3D printed microfluidic clinical diagnostic for PTB risk.
Collapse
Affiliation(s)
- Ellen K Parker
- Department of Chemistry and Biochemistry, C100 BNSN, Brigham Young University, Provo, UT, 84602, USA
| | - Anna V Nielsen
- Department of Chemistry and Biochemistry, C100 BNSN, Brigham Young University, Provo, UT, 84602, USA
| | - Michael J Beauchamp
- Department of Chemistry and Biochemistry, C100 BNSN, Brigham Young University, Provo, UT, 84602, USA
| | - Haifa M Almughamsi
- Department of Chemistry and Biochemistry, C100 BNSN, Brigham Young University, Provo, UT, 84602, USA
| | - Jacob B Nielsen
- Department of Chemistry and Biochemistry, C100 BNSN, Brigham Young University, Provo, UT, 84602, USA
| | - Mukul Sonker
- Department of Chemistry and Biochemistry, C100 BNSN, Brigham Young University, Provo, UT, 84602, USA
| | - Hua Gong
- Department of Electrical and Computer Engineering, 450G EB, Brigham Young University, Provo, UT, 84602, USA
| | - Gregory P Nordin
- Department of Electrical and Computer Engineering, 450G EB, Brigham Young University, Provo, UT, 84602, USA
| | - Adam T Woolley
- Department of Chemistry and Biochemistry, C100 BNSN, Brigham Young University, Provo, UT, 84602, USA.
| |
Collapse
|
6
|
Wuethrich A, Quirino JP. A decade of microchip electrophoresis for clinical diagnostics - A review of 2008-2017. Anal Chim Acta 2018; 1045:42-66. [PMID: 30454573 DOI: 10.1016/j.aca.2018.08.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/30/2018] [Accepted: 08/03/2018] [Indexed: 01/10/2023]
Abstract
A core element in clinical diagnostics is the data interpretation obtained through the analysis of patient samples. To obtain relevant and reliable information, a methodological approach of sample preparation, separation, and detection is required. Traditionally, these steps are performed independently and stepwise. Microchip capillary electrophoresis (MCE) can provide rapid and high-resolution separation with the capability to integrate a streamlined and complete diagnostic workflow suitable for the point-of-care setting. Whilst standard clinical diagnostics methods normally require hours to days to retrieve specific patient data, MCE can reduce the time to minutes, hastening the delivery of treatment options for the patients. This review covers the advances in MCE for disease detection from 2008 to 2017. Miniaturised diagnostic approaches that required an electrophoretic separation step prior to the detection of the biological samples are reviewed. In the two main sections, the discussion is focused on the technical set-up used to suit MCE for disease detection and on the strategies that have been applied to study various diseases. Throughout these discussions MCE is compared to other techniques to create context of the potential and challenges of MCE. A comprehensive table categorised based on the studied disease using MCE is provided. We also comment on future challenges that remain to be addressed.
Collapse
Affiliation(s)
- Alain Wuethrich
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Building 75, Brisbane, QLD, 4072, Australia
| | - Joselito P Quirino
- Australian Centre for Research on Separation Science (ACROSS), School of Physical Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart, TAS, 7001, Australia.
| |
Collapse
|
7
|
Ly J, Ha NS, Cheung S, van Dam RM. Toward miniaturized analysis of chemical identity and purity of radiopharmaceuticals via microchip electrophoresis. Anal Bioanal Chem 2018; 410:2423-2436. [PMID: 29470664 PMCID: PMC6482050 DOI: 10.1007/s00216-018-0924-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/19/2018] [Accepted: 01/29/2018] [Indexed: 10/18/2022]
Abstract
Miniaturized synthesis of positron emission tomography (PET) tracers is poised to offer numerous advantages including reduced tracer production costs and increased availability of diverse tracers. While many steps of the tracer production process have been miniaturized, there has been relatively little development of microscale systems for the quality control (QC) testing process that is required by regulatory agencies to ensure purity, identity, and biological safety of the radiotracer before use in human subjects. Every batch must be tested, and in contrast with ordinary pharmaceuticals, the whole set of tests of radiopharmaceuticals must be completed within a short-period of time to minimize losses due to radioactive decay. By replacing conventional techniques with microscale analytical ones, it may be possible to significantly reduce instrument cost, conserve lab space, shorten analysis times, and streamline this aspect of PET tracer production. We focus in this work on miniaturizing the subset of QC tests for chemical identity and purity. These tests generally require high-resolution chromatographic separation prior to detection to enable the approach to be applied to many different tracers (and their impurities), and have not yet, to the best of our knowledge, been tackled in microfluidic systems. Toward this end, we previously explored the feasibility of using the technique of capillary electrophoresis (CE) as a replacement for the "gold standard" approach of using high-performance liquid chromatography (HPLC) since CE offers similar separating power, flexibility, and sensitivity, but can readily be implemented in a microchip format. Using a conventional CE system, we previously demonstrated the successful separation of non-radioactive version of a clinical PET tracer, 3'-deoxy-3'-fluorothymidine (FLT), from its known by-products, and the separation of the PET tracer 1-(2'-deoxy-2'-fluoro-β-D-arabinofuranosyl)-cytosine (D-FAC) from its α-isomer, with sensitivity nearly as good as HPLC. Building on this feasibility study, in this paper, we describe the first effort to miniaturize the chemical identity and purity tests by using microchip electrophoresis (MCE). The fully automated proof-of-concept system comprises a chip for sample injection, a separation capillary, and an optical detection chip. Using the same model compound (FLT and its known by-products), we demonstrate that samples can be injected, separated, and detected, and show the potential to match the performance of HPLC. Addition of a radiation detector in the future would enable analysis of radiochemical identity and purity in the same device. We envision that eventually this MCE method could be combined with other miniaturized QC tests into a compact integrated system for automated routine QC testing of radiopharmaceuticals in the future. Graphical abstract Miniaturized quality control (QC) testing of batches of radiopharmaceuticals via microfluidic analysis. The proof-of-concept hybrid microchip electrophoresis (MCE) device demonstrated the feasibility of achieving comparable performance to conventional analytical instruments (HPLC or CE) for chemical purity testing.
Collapse
Affiliation(s)
- Jimmy Ly
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, 420 Westwood Plaza, Los Angeles, CA, 90095-7227, USA
- Crump Institute for Molecular Imaging and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, 650 Charles E Young Dr., Los Angeles, CA, 90095-8352, USA
- Bioengineering and Therapeutic Sciences, UCSF, San Francisco, CA, 94158, USA
| | - Noel S Ha
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, 420 Westwood Plaza, Los Angeles, CA, 90095-7227, USA
- Crump Institute for Molecular Imaging and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, 650 Charles E Young Dr., Los Angeles, CA, 90095-8352, USA
| | - Shilin Cheung
- Crump Institute for Molecular Imaging and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, 650 Charles E Young Dr., Los Angeles, CA, 90095-8352, USA
- Trace-ability, Inc., 6160 Bristol Parkway Ste. 200, Culver City, CA, 90230, USA
| | - R Michael van Dam
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, 420 Westwood Plaza, Los Angeles, CA, 90095-7227, USA.
- Crump Institute for Molecular Imaging and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, 650 Charles E Young Dr., Los Angeles, CA, 90095-8352, USA.
| |
Collapse
|
8
|
Sahore V, Sonker M, Nielsen AV, Knob R, Kumar S, Woolley AT. Automated microfluidic devices integrating solid-phase extraction, fluorescent labeling, and microchip electrophoresis for preterm birth biomarker analysis. Anal Bioanal Chem 2018; 410:933-941. [PMID: 28799040 PMCID: PMC5775915 DOI: 10.1007/s00216-017-0548-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/18/2017] [Accepted: 07/25/2017] [Indexed: 01/19/2023]
Abstract
We have developed multichannel integrated microfluidic devices for automated preconcentration, labeling, purification, and separation of preterm birth (PTB) biomarkers. We fabricated multilayer poly(dimethylsiloxane)-cyclic olefin copolymer (PDMS-COC) devices that perform solid-phase extraction (SPE) and microchip electrophoresis (μCE) for automated PTB biomarker analysis. The PDMS control layer had a peristaltic pump and pneumatic valves for flow control, while the PDMS fluidic layer had five input reservoirs connected to microchannels and a μCE system. The COC layers had a reversed-phase octyl methacrylate porous polymer monolith for SPE and fluorescent labeling of PTB biomarkers. We determined μCE conditions for two PTB biomarkers, ferritin (Fer) and corticotropin-releasing factor (CRF). We used these integrated microfluidic devices to preconcentrate and purify off-chip-labeled Fer and CRF in an automated fashion. Finally, we performed a fully automated on-chip analysis of unlabeled PTB biomarkers, involving SPE, labeling, and μCE separation with 1 h total analysis time. These integrated systems have strong potential to be combined with upstream immunoaffinity extraction, offering a compact sample-to-answer biomarker analysis platform. Graphical abstract Pressure-actuated integrated microfluidic devices have been developed for automated solid-phase extraction, fluorescent labeling, and microchip electrophoresis of preterm birth biomarkers.
Collapse
Affiliation(s)
- Vishal Sahore
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT, 84602-5700, USA
| | - Mukul Sonker
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT, 84602-5700, USA
| | - Anna V Nielsen
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT, 84602-5700, USA
| | - Radim Knob
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT, 84602-5700, USA
| | - Suresh Kumar
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT, 84602-5700, USA
| | - Adam T Woolley
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT, 84602-5700, USA.
| |
Collapse
|
9
|
Sonker M, Parker EK, Nielsen AV, Sahore V, Woolley AT. Electrokinetically operated microfluidic devices for integrated immunoaffinity monolith extraction and electrophoretic separation of preterm birth biomarkers. Analyst 2017; 143:224-231. [PMID: 29136068 PMCID: PMC5734996 DOI: 10.1039/c7an01357d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Biomarkers are often present in complex biological fluids like blood, requiring multiple, slow sample preparation steps that pose limitations in simplifying analysis. Here we report integrated immunoaffinity extraction and separation devices for analysis of preterm birth biomarkers in a human blood serum matrix. A reactive polymer monolith was used for immobilization of antibodies for selective extraction of target preterm birth biomarkers. Microfluidic immunoaffinity extraction protocols were optimized and then integrated with microchip electrophoresis for separation. Using these integrated devices, a ∼30 min analysis was carried out on low nanomolar concentrations of two preterm birth biomarkers spiked in a human serum matrix. This work is a promising step towards the development of an automated, integrated platform for determination of preterm birth risk.
Collapse
Affiliation(s)
- Mukul Sonker
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA.
| | | | | | | | | |
Collapse
|
10
|
Phillips TM. Recent advances in CE and microchip-CE in clinical applications: 2014 to mid-2017. Electrophoresis 2017; 39:126-135. [PMID: 28853177 DOI: 10.1002/elps.201700283] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 11/11/2022]
Abstract
CE and microchip CE (ME) are powerful tools for the analysis of a number of different analytes and have been applied to a variety of clinical fields and human samples. This review will present an overview of the most recent applications of these techniques to different areas of clinical medicine during the period of 2014 to mid-2017. CE and ME have been applied to clinical chemistry, drug detection and monitoring, hematology, infectious diseases, oncology, endocrinology, neonatology, nephrology, and genetic screening. Samples examined range from serum, plasma, and urine to lest utilized materials such as tears, cerebral spinal fluid, sweat, saliva, condensed breath, single cells, and biopsy tissue. Examples of clinical applications will be given along with the various detection systems employed.
Collapse
Affiliation(s)
- Terry M Phillips
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
11
|
Poinsot V, Ong-Meang V, Ric A, Gavard P, Perquis L, Couderc F. Recent advances in amino acid analysis by capillary electromigration methods: June 2015-May 2017. Electrophoresis 2017; 39:190-208. [PMID: 28805963 DOI: 10.1002/elps.201700270] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 12/13/2022]
Abstract
In the tenth edition of this article focused on recent advances in amino acid analysis using capillary electrophoresis, we describe the most important research articles published on this topic during the period from June 2015 to May 2017. This article follows the format of the previous articles published in Electrophoresis. The new developments in amino acid analysis with CE mainly describe improvements in CE associated with mass spectrometry. Focusing on applications, we mostly describe clinical works, although metabolomics studies are also very important. Finally, works focusing on amino acids in food and agricultural applications are also described.
Collapse
Affiliation(s)
- Véréna Poinsot
- Laboratoire des IMRCP, Université Paul Sabatier, Université de Toulouse, France
| | | | - Audrey Ric
- Laboratoire des IMRCP, Université Paul Sabatier, Université de Toulouse, France
| | - Pierre Gavard
- Laboratoire des IMRCP, Université Paul Sabatier, Université de Toulouse, France
| | - Lucie Perquis
- Laboratoire des IMRCP, Université Paul Sabatier, Université de Toulouse, France
| | - François Couderc
- Laboratoire des IMRCP, Université Paul Sabatier, Université de Toulouse, France
| |
Collapse
|
12
|
Liu Y, Wang W, Jia M, Liu R, Liu Q, Xiao H, Li J, Xue Y, Wang Y, Yan C. Recent advances in microscale separation. Electrophoresis 2017; 39:8-33. [DOI: 10.1002/elps.201700271] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Yuanyuan Liu
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Weiwei Wang
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Mengqi Jia
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Rangdong Liu
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Qing Liu
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Han Xiao
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Jing Li
- Unimicro (shanghai) Technologies Co., Ltd.; Shanghai P. R. China
| | - Yun Xue
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Yan Wang
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Chao Yan
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| |
Collapse
|
13
|
Recent advances in microfluidic sample preparation and separation techniques for molecular biomarker analysis: A critical review. Anal Chim Acta 2017; 986:1-11. [PMID: 28870312 DOI: 10.1016/j.aca.2017.07.043] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/07/2017] [Accepted: 07/13/2017] [Indexed: 12/23/2022]
Abstract
Microfluidics is a vibrant and expanding field that has the potential for solving many analytical challenges. Microfluidics show promise to provide rapid, inexpensive, efficient, and portable diagnostic solutions that can be used in resource-limited settings. Researchers have recently reported various microfluidic platforms for biomarker analysis applications. Sample preparation processes like purification, preconcentration and labeling have been characterized on-chip. Additionally, improvements in microfluidic separation techniques have been reported for molecular biomarkers. This review critically evaluates microfluidic sample preparation platforms and separation methods for biomarker analysis reported in the last two years. Key advances in device operation and ability to process different sample matrices in a variety of device materials are highlighted. Finally, current needs and potential future directions for microfluidic device development to realize its full diagnostic potential are discussed.
Collapse
|
14
|
Sonker M, Knob R, Sahore V, Woolley AT. Integrated electrokinetically driven microfluidic devices with pH-mediated solid-phase extraction coupled to microchip electrophoresis for preterm birth biomarkers. Electrophoresis 2017; 38:1743-1754. [PMID: 28272749 PMCID: PMC5541996 DOI: 10.1002/elps.201700054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 03/02/2017] [Accepted: 03/02/2017] [Indexed: 01/06/2023]
Abstract
Integration in microfluidics is important for achieving automation. Sample preconcentration integrated with separation in a microfluidic setup can have a substantial impact on rapid analysis of low-abundance disease biomarkers. Here, we have developed a microfluidic device that uses pH-mediated solid-phase extraction (SPE) for the enrichment and elution of preterm birth (PTB) biomarkers. Furthermore, this SPE module was integrated with microchip electrophoresis for combined enrichment and separation of multiple analytes, including a PTB peptide biomarker (P1). A reversed-phase octyl methacrylate monolith was polymerized as the SPE medium in polyethylene glycol diacrylate modified cyclic olefin copolymer microfluidic channels. Eluent for pH-mediated SPE of PTB biomarkers on the monolith was optimized using different pH values and ionic concentrations. Nearly 50-fold enrichment was observed in single channel SPE devices for a low nanomolar solution of P1, with great elution time reproducibility (<7% RSD). The monolith binding capacity was determined to be 400 pg (0.2 pmol). A mixture of a model peptide (FA) and a PTB biomarker (P1) was extracted, eluted, injected, and then separated by microchip electrophoresis in our integrated device with ∼15-fold enrichment. This device shows important progress towards an integrated electrokinetically operated platform for preconcentration and separation of biomarkers.
Collapse
Affiliation(s)
- Mukul Sonker
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Radim Knob
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Vishal Sahore
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Adam T Woolley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| |
Collapse
|
15
|
Novel volumetric method for highly repeatable injection in microchip electrophoresis. Anal Chim Acta 2017; 985:129-140. [PMID: 28864183 DOI: 10.1016/j.aca.2017.05.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 12/25/2022]
Abstract
A novel injector for microchip electrophoresis (MCE) has been designed and evaluated that achieves very high repeatability of injection volume suitable for quantitative analysis. It eliminates the injection biases in electrokinetic injection and the dependence on pressure and sample properties in hydrodynamic injection. The microfluidic injector, made of poly(dimethylsiloxane) (PDMS), operates similarly to an HPLC injection valve. It contains a channel segment (chamber) with a well-defined volume that serves as an "injection loop". Using on-chip microvalves, the chamber can be connected to the sample source during the "loading" step, and to the CE separation channel during the "injection" step. Once the valves are opened in the second state, electrophoretic potential is applied to separate the sample. For evaluation and demonstration purposes, the microinjector was connected to a 75 μm ID capillary and UV absorbance detector. For single compounds, a relative standard deviation (RSD) of peak area as low as 1.04% (n = 11) was obtained, and for compound mixtures, RSD as low as 0.40% (n = 4) was observed. Using the same microchip, the performance of this new injection technique was compared to hydrodynamic injection and found to have improved repeatability and less dependence on sample viscosity. Furthermore, a non-radioactive version of the positron-emission tomography (PET) imaging probe, FLT, was successfully separated from its known 3 structurally-similar byproducts with baseline resolution, demonstrating the potential for rapid, quantitative analysis of impurities to ensure the safety of batches of short-lived radiotracers. Both the separation efficiency and injection repeatability were found to be substantially higher when using the novel volumetric injection approach compared to electrokinetic injection (performed in the same chip). This novel microinjector provides a straightforward way to improve the performance of hydrodynamic injection and enables extremely repeatable sample volume injection in MCE. It could be used in any MCE application where volume repeatability is needed, including the quantitation of impurities in pharmaceutical or radiopharmaceutical samples.
Collapse
|
16
|
Dawod M, Arvin NE, Kennedy RT. Recent advances in protein analysis by capillary and microchip electrophoresis. Analyst 2017; 142:1847-1866. [PMID: 28470231 PMCID: PMC5516626 DOI: 10.1039/c7an00198c] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This review article describes the significant recent advances in the analysis of proteins by capillary and microchip electrophoresis during the period from mid-2014 to early 2017. This review highlights the progressions, new methodologies, innovative instrumental modifications, and challenges for efficient protein analysis in human specimens, animal tissues, and plant samples. The protein analysis fields covered in this review include analysis of native, reduced, and denatured proteins in addition to Western blotting, protein therapeutics and proteomics.
Collapse
Affiliation(s)
- Mohamed Dawod
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, Michigan 48109, USA.
| | | | | |
Collapse
|
17
|
Macdonald NP, Cabot JM, Smejkal P, Guijt RM, Paull B, Breadmore MC. Comparing Microfluidic Performance of Three-Dimensional (3D) Printing Platforms. Anal Chem 2017; 89:3858-3866. [PMID: 28281349 DOI: 10.1021/acs.analchem.7b00136] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Three-dimensional (3D) printing has emerged as a potential revolutionary technology for the fabrication of microfluidic devices. A direct experimental comparison of the three 3D printing technologies dominating microfluidics was conducted using a Y-junction microfluidic device, the design of which was optimized for each printer: fused deposition molding (FDM), Polyjet, and digital light processing stereolithography (DLP-SLA). Printer performance was evaluated in terms of feature size, accuracy, and suitability for mass manufacturing; laminar flow was studied to assess their suitability for microfluidics. FDM was suitable for microfabrication with minimum features of 321 ± 5 μm, and rough surfaces of 10.97 μm. Microfluidic devices >500 μm, rapid mixing (71% ± 12% after 5 mm, 100 μL/min) was observed, indicating a strength in fabricating micromixers. Polyjet fabricated channels with a minimum size of 205 ± 13 μm, and a surface roughness of 0.99 μm. Compared with FDM, mixing decreased (27% ± 10%), but Polyjet printing is more suited for microfluidic applications where flow splitting is not required, such as cell culture or droplet generators. DLP-SLA fabricated a minimum channel size of 154 ± 10 μm, and 94 ± 7 μm for positive structures such as soft lithography templates, with a roughness of 0.35 μm. These results, in addition to low mixing (8% ± 1%), showed suitability for microfabrication, and microfluidic applications requiring precise control of flow. Through further discussion of the capabilities (and limitations) of these printers, we intend to provide guidance toward the selection of the 3D printing technology most suitable for specific microfluidic applications.
Collapse
Affiliation(s)
- Niall P Macdonald
- ARC Centre of Excellence for Electromaterials Science, School of Physical Sciences, University of Tasmania , Sandy Bay, Hobart 7001, Tasmania, Australia.,Australian Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania , Sandy Bay, Hobart 7001, Tasmania, Australia
| | - Joan M Cabot
- ARC Centre of Excellence for Electromaterials Science, School of Physical Sciences, University of Tasmania , Sandy Bay, Hobart 7001, Tasmania, Australia.,Australian Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania , Sandy Bay, Hobart 7001, Tasmania, Australia
| | - Petr Smejkal
- Australian Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania , Sandy Bay, Hobart 7001, Tasmania, Australia
| | - Rosanne M Guijt
- Pharmacy School of Medicine, University of Tasmania , Hobart 7001, Tasmania, Australia
| | - Brett Paull
- ARC Centre of Excellence for Electromaterials Science, School of Physical Sciences, University of Tasmania , Sandy Bay, Hobart 7001, Tasmania, Australia.,Australian Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania , Sandy Bay, Hobart 7001, Tasmania, Australia
| | - Michael C Breadmore
- ARC Centre of Excellence for Electromaterials Science, School of Physical Sciences, University of Tasmania , Sandy Bay, Hobart 7001, Tasmania, Australia.,Australian Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania , Sandy Bay, Hobart 7001, Tasmania, Australia
| |
Collapse
|
18
|
Ha JW. Acupuncture Injection Combined with Electrokinetic Injection for Polydimethylsiloxane Microfluidic Devices. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2017; 2017:7495348. [PMID: 28326222 PMCID: PMC5343277 DOI: 10.1155/2017/7495348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 02/09/2017] [Accepted: 02/12/2017] [Indexed: 06/06/2023]
Abstract
We recently reported acupuncture sample injection that leads to reproducible injection of nL-scale sample segments into a polydimethylsiloxane (PDMS) microchannel for microchip capillary electrophoresis. The advantages of the acupuncture injection in microchip capillary electrophoresis include capability of minimizing sample loss and voltage control hardware and capability of introducing sample plugs into any desired position of a microchannel. However, the challenge in the previous study was to achieve reproducible, pL-scale sample injections into PDMS microchannels. In the present study, we introduce an acupuncture injection technique combined with electrokinetic injection (AICEI) technique to inject pL-scale sample segments for microchip capillary electrophoresis. We carried out the capillary zone electrophoresis (CZE) separation of FITC and fluorescein, and the mixture of 10 μM FITC and 10 μM fluorescein was separated completely by using the AICEI method.
Collapse
Affiliation(s)
- Ji Won Ha
- Department of Chemistry, University of Ulsan, 93 Daehak-Ro, Nam-Gu, Ulsan 44610, Republic of Korea
| |
Collapse
|
19
|
Wuethrich A, Quirino JP. Sensitivity enhancing injection from a sample reservoir and channel interface in microchip electrophoresis. J Sep Sci 2017; 40:927-932. [DOI: 10.1002/jssc.201601064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/08/2016] [Accepted: 11/28/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Alain Wuethrich
- Australian Centre for Research on Separation Science (ACROSS) School of Physical Sciences‐Chemistry University of Tasmania Hobart TAS 7001 Australia
| | - Joselito P. Quirino
- Australian Centre for Research on Separation Science (ACROSS) School of Physical Sciences‐Chemistry University of Tasmania Hobart TAS 7001 Australia
| |
Collapse
|
20
|
Kumar S, Sahore V, Rogers CI, Woolley AT. Development of an integrated microfluidic solid-phase extraction and electrophoresis device. Analyst 2017; 141:1660-8. [PMID: 26820409 DOI: 10.1039/c5an02352a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This study focuses on the design and fabrication of a microfluidic platform that integrates solid-phase extraction (SPE) and microchip electrophoresis (μCE) on a single device. The integrated chip is a multi-layer structure consisting of polydimethylsiloxane valves with a peristaltic pump, and a porous polymer monolith in a thermoplastic layer. The valves and pump are fabricated using soft lithography to enable pressure-based fluid actuation. A porous polymer monolith column is synthesized in the SPE unit using UV photopolymerization of a mixture consisting of monomer, cross-linker, photoinitiator, and porogens. The hydrophobic, porous structure of the monolith allows protein retention with good through flow. The functionality of the integrated device in terms of pressure-controlled flow, protein retention and elution, on-chip enrichment, and separation is evaluated using ferritin (Fer). Fluorescently labeled Fer is enriched ∼80-fold on a reversed-phase monolith from an initial concentration of 100 nM. A five-valve peristaltic pump produces higher flow rates and a narrower Fer elution peak than a three-valve pump operated under similar conditions. Moreover, the preconcentration capability of the SPE unit is demonstrated through μCE of enriched Fer and two model peptides in the integrated system. FA, GGYR, and Fer are concentrated 4-, 12-, and 50-fold, respectively. The loading capacity of the polymer monolith is 56 fmol (25 ng) for Fer. This device lays the foundation for integrated systems that can be used to analyze various disease biomarkers.
Collapse
Affiliation(s)
- Suresh Kumar
- Department of Chemistry and Biochemistry, Brigham Young University, UT 84602-5700, USA.
| | - Vishal Sahore
- Department of Chemistry and Biochemistry, Brigham Young University, UT 84602-5700, USA.
| | - Chad I Rogers
- Department of Chemistry and Biochemistry, Brigham Young University, UT 84602-5700, USA.
| | - Adam T Woolley
- Department of Chemistry and Biochemistry, Brigham Young University, UT 84602-5700, USA.
| |
Collapse
|
21
|
Gabriel EF, dos Santos RA, Lobo-Júnior EO, Rezende KC, Coltro WK. Hydrodynamic injection on electrophoresis microchips using an electronic micropipette. Talanta 2017; 162:19-23. [DOI: 10.1016/j.talanta.2016.09.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/16/2016] [Accepted: 09/17/2016] [Indexed: 01/06/2023]
|
22
|
Ha JW, Hahn JH. Acupuncture injection for field amplified sample stacking and glass microchip-based capillary gel electrophoresis. Electrophoresis 2016; 38:521-524. [DOI: 10.1002/elps.201600469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/04/2016] [Accepted: 11/05/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Ji Won Ha
- Department of Chemistry; University of Ulsan; Ulsan South Korea
| | - Jong Hoon Hahn
- Department of Chemistry, BioNanotechnology Center; Pohang University of Science and Technology; Pohang South Korea
| |
Collapse
|
23
|
Sonker M, Yang R, Sahore V, Kumar S, Woolley AT. On-Chip Fluorescent Labeling using Reversed-phase Monoliths and Microchip Electrophoretic Separations of Selected Preterm Birth Biomarkers. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2016; 8:7739-7746. [PMID: 28496521 PMCID: PMC5421993 DOI: 10.1039/c6ay01803c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
On-chip preconcentration, purification, and fluorescent labeling are desirable sample preparation steps to achieve complete automation in integrated microfluidic systems. In this work, we developed electrokinetically operated microfluidic devices for solid-phase extraction and fluorescent labeling of preterm birth (PTB) biomarkers. Reversed-phase monoliths based on different acrylate monomers were photopolymerized in cyclic olefin copolymer microdevices and studied for the selective retention and elution of a fluorescent dye and PTB biomarkers. Octyl methacrylate-based monoliths with desirable retention and elution characteristics were chosen and used for on-chip fluorescent labeling of three PTB biomarkers. Purification of on-chip labeled samples was done by selective elution of unreacted dye prior to sample. Automated and rapid on-chip fluorescent labeling was achieved with similar efficiency to that obtained for samples labeled off chip. Additionally, protocols for microchip electrophoresis of several off-chip-labeled PTB biomarkers were demonstrated in poly(methyl methacrylate) microfluidic devices. This study is an important step toward the development of integrated on-chip labeling and separation microfluidic devices for PTB biomarkers.
Collapse
Affiliation(s)
- Mukul Sonker
- Department of Chemistry and Biochemistry, Brigham Young University, Provo 84602, UT, USA
| | - Rui Yang
- Department of Chemistry and Biochemistry, Brigham Young University, Provo 84602, UT, USA
| | - Vishal Sahore
- Department of Chemistry and Biochemistry, Brigham Young University, Provo 84602, UT, USA
| | - Suresh Kumar
- Department of Chemistry and Biochemistry, Brigham Young University, Provo 84602, UT, USA
| | - Adam T Woolley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo 84602, UT, USA
| |
Collapse
|
24
|
Breadmore MC, Wuethrich A, Li F, Phung SC, Kalsoom U, Cabot JM, Tehranirokh M, Shallan AI, Abdul Keyon AS, See HH, Dawod M, Quirino JP. Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2014–2016). Electrophoresis 2016; 38:33-59. [DOI: 10.1002/elps.201600331] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Michael C. Breadmore
- Australian Centre of Research on Separation Science, School of Physical Science University of Tasmania Hobart Tasmania Australia
- ARC Centre of Excellence for Electromaterials Science, School of Physical Science University of Tasmania Hobart Tasmania Australia
- ASTech, ARC Training Centre for Portable Analytical Separation Technologies, School of Physical Science University of Tasmania Hobart Tasmania Australia
| | - Alain Wuethrich
- Australian Centre of Research on Separation Science, School of Physical Science University of Tasmania Hobart Tasmania Australia
| | - Feng Li
- Australian Centre of Research on Separation Science, School of Physical Science University of Tasmania Hobart Tasmania Australia
| | - Sui Ching Phung
- Australian Centre of Research on Separation Science, School of Physical Science University of Tasmania Hobart Tasmania Australia
| | - Umme Kalsoom
- Australian Centre of Research on Separation Science, School of Physical Science University of Tasmania Hobart Tasmania Australia
| | - Joan M. Cabot
- Australian Centre of Research on Separation Science, School of Physical Science University of Tasmania Hobart Tasmania Australia
- ARC Centre of Excellence for Electromaterials Science, School of Physical Science University of Tasmania Hobart Tasmania Australia
| | - Masoomeh Tehranirokh
- ASTech, ARC Training Centre for Portable Analytical Separation Technologies, School of Physical Science University of Tasmania Hobart Tasmania Australia
| | - Aliaa I. Shallan
- Department of Analytical Chemistry, Faculty of Pharmacy Helwan University Cairo Egypt
| | - Aemi S. Abdul Keyon
- Department of Chemistry, Faculty of Science Universiti Teknologi Malaysia Johor Bahru Johor Malaysia
| | - Hong Heng See
- Department of Chemistry, Faculty of Science Universiti Teknologi Malaysia Johor Bahru Johor Malaysia
- Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and industrial Research Universiti Teknologi Malaysia Johor Bahru Johor Malaysia
| | - Mohamed Dawod
- Department of Chemistry University of Michigan Ann Arbor MI USA
| | - Joselito P. Quirino
- Australian Centre of Research on Separation Science, School of Physical Science University of Tasmania Hobart Tasmania Australia
| |
Collapse
|
25
|
Štěpánová S, Kašička V. Analysis of proteins and peptides by electromigration methods in microchips. J Sep Sci 2016; 40:228-250. [PMID: 27704694 DOI: 10.1002/jssc.201600962] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 09/14/2016] [Accepted: 09/14/2016] [Indexed: 11/07/2022]
Abstract
This review presents the developments and applications of microchip electromigration methods in the separation and analysis of peptides and proteins in the period 2011-mid-2016. The developments in sample preparation and preconcentration, microchannel material, and surface treatment are described. Separations by various microchip electromigration methods (zone electrophoresis in free and sieving media, affinity electrophoresis, isotachophoresis, isoelectric focusing, electrokinetic chromatography, and electrochromatography) are demonstrated. Advances in detection methods are reported and novel applications in the areas of proteomics and peptidomics, quality control of peptide and protein pharmaceuticals, analysis of proteins and peptides in biomatrices, and determination of physicochemical parameters are shown.
Collapse
Affiliation(s)
- Sille Štěpánová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
26
|
Ha JW, Hahn JH. Acupuncture Sample Injection for Microchip Capillary Electrophoresis and Electrokinetic Chromatography. Anal Chem 2016; 88:4629-34. [DOI: 10.1021/acs.analchem.6b00789] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ji Won Ha
- Department of Chemistry, University of Ulsan, 93 Daehak-Ro, Nam-Gu, Ulsan, 44610, South Korea
| | - Jong Hoon Hahn
- Department of Chemistry,
BioNanotechnology Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, South Korea
| |
Collapse
|