1
|
Deng S, Chen A, Chen W, Lai J, Pei Y, Wen J, Yang C, Luo J, Zhang J, Lei C, Varma SN, Liu C. Fabrication of Biodegradable and Biocompatible Functional Polymers for Anti-Infection and Augmenting Wound Repair. Polymers (Basel) 2022; 15:polym15010120. [PMID: 36616470 PMCID: PMC9823642 DOI: 10.3390/polym15010120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
The problem of bacteria-induced infections threatens the lives of many patients. Meanwhile, the misuse of antibiotics has led to a significant increase in bacterial resistance. There are two main ways to alleviate the issue: one is to introduce antimicrobial agents to medical devices to get local drug releasing and alleviating systemic toxicity and resistance, and the other is to develop new antimicrobial methods to kill bacteria. New antimicrobial methods include cationic polymers, metal ions, hydrophobic structures to prevent bacterial adhesion, photothermal sterilization, new biocides, etc. Biodegradable biocompatible synthetic polymers have been widely used in the medical field. They are often used in tissue engineering scaffolds as well as wound dressings, where bacterial infections in these medical devices can be serious or even fatal. However, such materials usually do not have inherent antimicrobial properties. They can be used as carriers for drug delivery or compounded with other antimicrobial materials to achieve antimicrobial effects. This review focuses on the antimicrobial behavior, preparation methods, and biocompatibility testing of biodegradable biocompatible synthetic polymers. Degradable biocompatible natural polymers with antimicrobial properties are also briefly described. Finally, the medical applications of these polymeric materials are presented.
Collapse
Affiliation(s)
- Shuhua Deng
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Institute of Orthopaedics and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, London HA4 4LP, UK
| | - Anfu Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Institute of Orthopaedics and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, London HA4 4LP, UK
- Correspondence: (A.C.); (C.L.)
| | - Weijia Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Jindi Lai
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Yameng Pei
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiahua Wen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Can Yang
- Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen 518118, China
| | - Jiajun Luo
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow G12 8LT, UK
| | - Jingjing Zhang
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Caihong Lei
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Swastina Nath Varma
- Institute of Orthopaedics and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, London HA4 4LP, UK
| | - Chaozong Liu
- Institute of Orthopaedics and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, London HA4 4LP, UK
- Correspondence: (A.C.); (C.L.)
| |
Collapse
|
2
|
Zhang L, Wang J, Gu X, Shang X, Ma X, Song W, Wang Y. Self-assembly and cleaning and wettability of a polysaccharide-surfactant system formed from the cationic hydroxypropyltrimethyl ammonium chloride chitosan and nonionic sucrose lauric acid ester. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|