1
|
Wu D, Wang Y, Wu N, Li T, Shen Y, Liu H, Yarmamat M, Wang M, Li L, Jian N. β-cyclodextrin-modulated ratiometric supramolecular BODIPY fluoroprobe for highly selective and sensitive detection of thiophenol. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135751. [PMID: 39244983 DOI: 10.1016/j.jhazmat.2024.135751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/22/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Thiophenol (PhSH) is an important industrial intermediate but displays significant toxicity towards environmental and biological systems. Here, we introduce a supramolecular system based on β-cyclodextrin (β-CD) and boron dipyrromethene (BODIPY) as a ratiometric fluorescence probe to discriminate PhSH in environmental water samples, cells, and in vivo. In aqueous solutions, BODIPY shows extremely weak fluorescence intensity due to its aggregation into nanometer-sized clusters, which prevents its interaction with thiols. However, within a β-CD environment, it can selectively and sensitively detect PhSH. Also, the stability of the probe was significantly improved. The mechanism studies based on stoichiometry, NMR spectroscopy, and theoretical calculation revealed distinct intermolecular interactions between β-CD and BODIPY, including host-guest interactions and hydrogen bonds. Low limit of detection (10.7 nM) and rapid response time (5 min) have been achieved, and the practicality of the supramolecular system (BODIPY@β-CD) has been verified by actual sample analysis. Furthermore, the first hydrogel-based sensing system for portable PhSH detection has been developed, facilitating rapid and on-site colorimetric visualization across both liquid and gas phases. Most importantly, using a low amount of the probe, early stages of low-dose exposure to PhSH can be visualized in living cells and zebrafish. Therefore, BODIPY@β-CD is a robust new monitoring tool for the detection of PhSH in various scenarios, indicating the promising application value of the host-guest supramolecular probe in detecting highly toxic substances.
Collapse
Affiliation(s)
- Di Wu
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yuxin Wang
- School of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Niu Wu
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China; School of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Tong Li
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China; School of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yueyi Shen
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Hongli Liu
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Mubarak Yarmamat
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Mingpeng Wang
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Lijie Li
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Ningge Jian
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Deng Z, Cao J, Zhao L, Zhang Z, Yuan J. Trimetallic FeCoNi Metal-Organic Framework with Enhanced Peroxidase-like Activity for the Construction of a Colorimetric Sensor for Rapid Detection of Thiophenol in Water Samples. Molecules 2024; 29:3739. [PMID: 39202819 PMCID: PMC11356859 DOI: 10.3390/molecules29163739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
In recent years, nanozymes have attracted particular interest and attention as catalysts because of their high catalytic efficiency and stability compared with natural enzymes, whereas how to use simple methods to further improve the catalytic activity of nanozymes is still challenging. In this work, we report a trimetallic metal-organic framework (MOF) based on Fe, Co and Ni, which was prepared by replacing partial original Fe nodes of the Fe-MOF with Co and Ni nodes. The obtained FeCoNi-MOF shows both oxidase-like activity and peroxidase-like activity. FeCoNi-MOF can not only oxidize the chromogenic substrate 3,3,5,5-tetramethylbenzidine (TMB) to its blue oxidation product oxTMB directly, but also catalyze the activation of H2O2 to oxidize the TMB. Compared with corresponding monometallic/bimetallic MOFs, the FeCoNi-MOF with equimolar metals hereby prepared exhibited higher peroxidase-like activity, faster colorimetric reaction speed (1.26-2.57 folds), shorter reaction time (20 min) and stronger affinity with TMB (2.50-5.89 folds) and H2O2 (1.73-3.94 folds), owing to the splendid synergistic electron transfer effect between Fe, Co and Ni. Considering its outstanding advantages, a promising FeCoNi-MOF-based sensing platform has been designated for the colorimetric detection of the biomarker H2O2 and environmental pollutant TP, and lower limits of detection (LODs) (1.75 μM for H2O2 and 0.045 μM for TP) and wider linear ranges (6-800 μM for H2O2 and 0.5-80 μM for TP) were obtained. In addition, the newly constructed colorimetric platform for TP has been applied successfully for the determination of TP in real water samples with average recoveries ranging from 94.6% to 112.1%. Finally, the colorimetric sensing platform based on FeCoNi-MOF is converted to a cost-effective paper strip sensor, which renders the detection of TP more rapid and convenient.
Collapse
Affiliation(s)
- Zehui Deng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China;
- Shandong Institute of Metrology, Jinan 250014, China
| | - Jiaqing Cao
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, 666 Liaohe Road (S), Changzhou 213022, China
| | - Lei Zhao
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, 666 Liaohe Road (S), Changzhou 213022, China
| | - Zhao Zhang
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, 666 Liaohe Road (S), Changzhou 213022, China
| | - Jianwei Yuan
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, 666 Liaohe Road (S), Changzhou 213022, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing 211816, China
| |
Collapse
|
3
|
Lin P, Xie C, Liu T, Yuan X, Luo K, Yang Q, Tan L, Lin Q, Zhou L. Rational construction of reliable fluorescent probes for rapid detection and imaging evaluation of hazardous thiophenol in real-food and biosystems. Food Chem 2024; 432:137264. [PMID: 37643519 DOI: 10.1016/j.foodchem.2023.137264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Thiophenol (PhSH), a highly reactive aromatic thiol, plays an essential role as a common industrial raw material in food, pesticides, pharmaceuticals, and cosmetics. In this work, we designed and constructed two fluorescent probes CM-PhSH and CM-Ratio-PhSH by a rational strategy. Specifically, coumarin fluorophores with excellent optical properties were modified, and olefinic unsaturated bonds served as reaction sites for the detection of PhSH. Based on this, the introduction of the nitro group at specific positions of the CM-PhSH changed the fluorescence emission of the CM-Ratio-PhSH, eventually obtaining a novel ratiometric fluorescent probe CM-Ratio-PhSH for PhSH detection. Surprisingly, these two probes exhibited advantages such as high specificity and low limit of detection (LOD) for CM-PhSH 32.3 nM and CM-Ratio-PhSH 40.2 nM, respectively. Furthermore, subsequent experiments demonstrated CM-PhSH and CM-Ratio-PhSH could be successfully used for highly selective and rapid detection of PhSH in aqueous solutions, live cells, and complex food samples.
Collapse
Affiliation(s)
- Pengxu Lin
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Can Xie
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Ting Liu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaomin Yuan
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Kun Luo
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qiaomei Yang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Libin Tan
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qinlu Lin
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Liyi Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
4
|
Lee J, Lee S, Park YK. Reduction of Odor-causing Compounds in Wastewater using Biochar: A Review. BIORESOURCE TECHNOLOGY 2023:129419. [PMID: 37422094 DOI: 10.1016/j.biortech.2023.129419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
Wastewater contains chemical compounds that cause malodors, such as ammonium cation, dimethyl sulfide, and volatile organic compounds. Biochar-based reduction in the odorants has been proposed as an effective approach along with maintaining environmental neutrality as biochar is a sustainable material made from biomass and biowaste. Biochar can have high specific surface area and microporous structure with proper activation, appropriate for sorption purposes. Recently, various research directions have been proposed to determine the removal efficiency of biochar for different odorants contained in wastewater. This article is aimed at providing the most updated review of biochar-based removal of odor-causing compounds in wastewater while highlighting the current advances. It was distinguished that the odorant removal performance of biochar is highly associated with the raw material and modification method of biochar, and the kind of odorants. Further research should be required for more practical use of biochar for the reduction of odorants in wastewater.
Collapse
Affiliation(s)
- Jechan Lee
- Department of Global Smart City, Sungkyunkwan University, Suwon 16419, Republic of Korea; School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seonho Lee
- Department of Global Smart City, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea.
| |
Collapse
|
5
|
Xu ZY, Wang XH, Luo HQ, Li NB. Cascade reaction-based highly sensitive fluorescent sensing systems applicable for dual-pattern fluorescence visualizing of thiophenol flavors in meat products and condiments. Food Chem 2023; 407:135120. [PMID: 36495742 DOI: 10.1016/j.foodchem.2022.135120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/29/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022]
Abstract
Thiophenols (ArSHs) are widely used as popular flavoring ingredients for making daily dishes. Dissecting the ArSHs contents in common foodstuffs is meaningful in the field of food safety science. Herein, a novel small-molecule sensor 2-(1H-benzo[d]imidazol-2-yl)-3-(2-(2,4-dinitrophenoxy)-4-morpholinophenyl)acrylonitrile (NOSA) has been tailored. The NOSA is able to respond to ArSHs, spontaneously yielding highly green-emissive fluorescent iminocoumarin (I500). This cascade reaction-based strategy is sensitive (limit-of-detection = 2.8 nM), rapid (within 5 min), and selective toward ArSH flavors. Probe NOSA has been applied to the determination of ArSHs in real-life meat products and condiments. Moreover, a far-red fluorescent compound, 2-(7-(diethylamino)-4-(4-(methylthio)styryl)-2H-chromen-2-ylidene)malononitrile (CMMT), has been first combined with NOSA to construct a composite probe NOSA@CMMT for the ratiometric detection of ArSHs (I500/I630). System NOSA@CMMT exhibits a conspicuous fluorescence change from deep-red to light-green. Benefitted from the gorgeous chromatic fluctuation, a smartphone-integrated analysis platform is established for the real-time evaluation of ArSHs level.
Collapse
Affiliation(s)
- Zi Yi Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Xiao Hu Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Hong Qun Luo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Nian Bing Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
6
|
Fast Response Fluorescent Probe with a Large Stokes Shift for Thiophenol Detection in Water Samples and Cell Imaging. JOURNAL OF ANALYSIS AND TESTING 2023. [DOI: 10.1007/s41664-022-00247-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
7
|
Guselnikova O, Nugraha AS, Na J, Postnikov P, Kim HJ, Plotnikov E, Yamauchi Y. Surface Filtration in Mesoporous Au Films Decorated by Ag Nanoparticles for Solving SERS Sensing Small Molecules in Living Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41629-41639. [PMID: 36043945 DOI: 10.1021/acsami.2c12804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
For surface-enhanced Raman spectroscopy (SERS) sensing of small molecules in the presence of living cells, biofouling and blocking of plasmonic centers are key challenges. Here, we have developed a mesoporous Au (AuM) film coated with a Ag nanoparticles (NPs) as a plasmonic sensor (AuM@Ag) to analyze aromatic thiols, which is an example of a small molecule, in the presence of a living cell strain (e.g., MDA-MB-231) as a model living system. The resulting AuM@Ag provides 0.1 nM sensitivity and high reproducibility for thiols sensing. Simultaneously, the AuM@Ag film filters large biomolecules, preventing Raman signals from overlapping produced by large biomolecules. After analysis, the AuM@Ag film undergoes recycling by the full dissolution of the Ag-thiol layer and removal of thiols from AuM. Furthermore, fresh AgNPs are formed for further SERS analysis, which circumvents the Ag oxidation issue. The ease of the AgNPs deposition allows up to 12 cycles of on-demand recycling and sensing even after utilization as a sensor in multicomponent media without enhancement and sensitivity loss. The reported mesoporous film with surface filtering ability and prominent recycling procedure promises to offer a new strategy for the detection of various small molecules in the presence of living cells.
Collapse
Affiliation(s)
- Olga Guselnikova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 6340034, Russian Federation
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Asep Sugih Nugraha
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jongbeom Na
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Research and Development (R&D) Division, Green Energy Institute, Mokpo, Jeollanamdo 58656, Republic of Korea
- Materials Architecturing Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Pavel Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 6340034, Russian Federation
| | - Hyun-Jong Kim
- Surface Technology Group, Korea Institute of Industrial Technology (KITECH), Incheon 21999, Republic of Korea
| | - Evgenii Plotnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 6340034, Russian Federation
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
8
|
Guo S, Wang L, Jiang B. A novel dibenzo[ a, c]phenazine-based fluorescent probe for fast and selective detection of thiophenols in environmental water. RSC Adv 2022; 12:8611-8616. [PMID: 35424794 PMCID: PMC8985155 DOI: 10.1039/d1ra08605g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/14/2022] [Indexed: 11/21/2022] Open
Abstract
A new dibenzo[a,c]phenazine-based fluorescent probe exhibits high selectivity and sensitivity towards thiophenols in environmental water.
Collapse
Affiliation(s)
- Shuju Guo
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, P. R. China
| | - Lijun Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, P. R. China
| | - Bo Jiang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, P. R. China
| |
Collapse
|
9
|
Xiao L, Zhang D, Zhang J, Pu S. A iridium(III) complex-based ‘turn-on’ fluorescent probe with two recognition site for rapid detection of thiophenol and its application in water samples and human serum. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
A novel fluorescent labeling reagent, 2-(9-acridone)-ethyl chloroformate, and its application to the analysis of free amino acids in honey samples by HPLC with fluorescence detection and identification with online ESI-MS. Anal Bioanal Chem 2020; 412:8339-8350. [PMID: 33029671 DOI: 10.1007/s00216-020-02969-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 10/23/2022]
Abstract
In this study, a novel fluorescent labeling reagent 2-(9-acridone)-ethyl chloroformate (AEC-Cl) was designed, synthesized and applied for the determination of free amino acids by high-performance liquid chromatography with a fluorescence detector (HPLC-FLD). The free amino acids were rapidly and efficiently labeled by AEC-Cl in the presence of basic catalyst (pH 9.0) within 5 min at room temperature (25 °C). The derivatives exhibited excellent stability and fluorescence properties, with maximum excitation and emission wavelengths at 268 nm and 438 nm, respectively. Derivatives of 22 kinds of natural amino acids were completely separated by gradient elution on a Hypersil ODS C18 column. Under the optimal conditions, the calibration curves exhibited excellent linear responses, with correlation coefficients of R2 > 0.9994. The detection and quantification limits were in the range of 0.61-2.67 μg kg-1 and 2.07-8.35 μg kg-1, respectively. Therefore, AEC-Cl was successfully applied for the detection of trace levels of free amino acids in honey samples. Graphical abstract A novel fluorescent labeling reagent was applied for the determination of free amino acids in honey by high-performance liquid chromatography with a fluorescence detector.
Collapse
|
11
|
Wu X, Li Y, Yang S, Tian H, Sun B. Discriminative detection of mercury (II) and hydrazine using a dual‐function fluorescent probe. LUMINESCENCE 2020; 35:754-762. [DOI: 10.1002/bio.3781] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/02/2020] [Accepted: 01/12/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Xiaoming Wu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Beijing Key Laboratory of Flavour ChemistryBeijing Technology and Business University Beijing China
| | - Yanan Li
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Beijing Key Laboratory of Flavour ChemistryBeijing Technology and Business University Beijing China
| | - Shaoxiang Yang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Beijing Key Laboratory of Flavour ChemistryBeijing Technology and Business University Beijing China
| | - Hongyu Tian
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Beijing Key Laboratory of Flavour ChemistryBeijing Technology and Business University Beijing China
| | - Baoguo Sun
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Beijing Key Laboratory of Flavour ChemistryBeijing Technology and Business University Beijing China
| |
Collapse
|
12
|
A rapid and visible colorimetric fluorescent probe for benzenethiol flavor detection. Food Chem 2019; 286:322-328. [DOI: 10.1016/j.foodchem.2019.02.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/22/2019] [Accepted: 02/07/2019] [Indexed: 11/23/2022]
|
13
|
Wang H, Li Y, Yang S, Tian H, Liang S, Sun B. Dual-Function Fluorescent Probe for Detection of Hydrogen Sulfide and Water Content in Dimethyl Sulfoxide. ACS OMEGA 2019; 4:10695-10701. [PMID: 31460167 PMCID: PMC6648854 DOI: 10.1021/acsomega.9b00868] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/10/2019] [Indexed: 05/04/2023]
Abstract
To detect hydrogen sulfide (H2S) and water content in dimethyl sulfoxide, the fluorescent probe (Probe 1) was used, as it not only detects H2S but also detects the water content. After H2S was added into Probe 1, the intensity of fluorescence increased and was up to 1300 times. In case the H2S concentration was in the range 0-20 μM, it was able to be detected by Probe 1, and the limit of detection was 0.851 nM. When Probe 1 and H2S underwent a reaction, the solution color had some changes. These colors changed in terms of the concentration changes of H2S, ranging from colorless to yellow. The Probe 1 test paper only needed to be exposed to hydrogen sulfide gas for 20 s for the color change to occur. Besides, Probe 1-H2S was used to detect water content in dimethyl sulfoxide which ranged from 0 to 100%. The color change of the solution was opposite to that of H2S, ranging from yellow to colorless.
Collapse
Affiliation(s)
- Hao Wang
- Beijing Advanced Innovation Center
for Food Nutrition and Human Health, Beijing
Technology and Business University, Beijing 100048, PR China
| | - Yanan Li
- Beijing Advanced Innovation Center
for Food Nutrition and Human Health, Beijing
Technology and Business University, Beijing 100048, PR China
| | - Shaoxiang Yang
- Beijing Advanced Innovation Center
for Food Nutrition and Human Health, Beijing
Technology and Business University, Beijing 100048, PR China
| | - Hongyu Tian
- Beijing Advanced Innovation Center
for Food Nutrition and Human Health, Beijing
Technology and Business University, Beijing 100048, PR China
| | - Sen Liang
- Beijing Advanced Innovation Center
for Food Nutrition and Human Health, Beijing
Technology and Business University, Beijing 100048, PR China
| | - Baoguo Sun
- Beijing Advanced Innovation Center
for Food Nutrition and Human Health, Beijing
Technology and Business University, Beijing 100048, PR China
| |
Collapse
|
14
|
A dual-function fluorescent probe for discriminative detection of hydrogen sulfide and hydrazine. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.03.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Ji Z, Yu Y, Jin Q, Li G, Hu N, Zhou W, Suo Y, Sun Z, You J. Determination of naturally occurring thyreostats in bovine milk by high performance liquid chromatography combined with fluorescence detection. Microchem J 2019. [DOI: 10.1016/j.microc.2018.11.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Development of a nitrogen-rich hyperbranched polymer as adsorbent for enrichment and determination of auxins in plants. Anal Bioanal Chem 2019; 411:1409-1419. [PMID: 30635663 DOI: 10.1007/s00216-018-01571-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/19/2018] [Accepted: 12/29/2018] [Indexed: 10/27/2022]
Abstract
In this study, a novel nitrogen-rich hyperbranched polymer was designed and synthesized via one-step precipitation copolymerization strategy. As possessing the lone-pair-electron-containing nitrogen atoms and positive-charged amine groups, as well as π electron-conjugated system, the prepared polymer displayed a strong tendency to adsorb protons acid, and negative-charged and conjugated compounds according to acid-base interaction, electrostatic interaction, and π-π stacking interaction. Based on these properties, a novel approach for assembling the proposed polymer coupled with high-performance liquid chromatography was successfully employed for selective enrichment and determination of auxins in plants. The extraction and desorption conditions were evaluated and the limits of detection and the limits of quantification of the proposed method were in the range of 0.15-0.29 μg L-1 and 0.49-0.98 μg L-1 for the four auxins based on the signal-to-noise ratio of 3:1 and 10:1, respectively. The recoveries of the target auxins from spiked plant samples were in the range from 85.0 to 116.3% with relative standard deviations lower than 9.6%. This study presented an inspiring thought for the construction of the versatile polymer adsorbent with highly efficient capturing of analytes from complex samples. Graphical abstract.
Collapse
|
17
|
Hou P, Wang J, Fu S, Liu L, Chen S. Highly sensitive fluorescent probe based on a novel phenothiazine dye for detection of thiophenols in real water samples and living cells. Anal Bioanal Chem 2018; 411:935-942. [PMID: 30535528 DOI: 10.1007/s00216-018-1525-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/17/2018] [Accepted: 11/27/2018] [Indexed: 01/26/2023]
Abstract
Based on an excited-state intramolecular proton transfer (ESIPT) fluorophore, a novel fluorescent off-on probe for detection of thiophenols was designed and synthesized. This probe (λex = 401 nm, λem = 527 nm) displayed high specificity for sensing thiophenols over other biologically related species. Besides, this probe possessed capabilities of monitoring thiophenols with rapid response rate (3 min), a large Stokes shift (126 nm), and high sensitivity (2.7 nM). The sensing mechanism was considered to be that thiophenols triggered thiolysis of the probe and the ESIPT fluorophore was released, as confirmed by means of HPLC and HRMS. Most notably, this probe was successfully applied to monitor levels of thiophenols in realistic samples and MDA-MB-231 cells. Graphical abstract A novel phenothiazine-based fluorescent probe was developed for sensitively sensing thiophenols in both aqueous medium and living cells.
Collapse
Affiliation(s)
- Peng Hou
- College of Pharmacy, Qiqihar Medical University, 333 Bukui Street, Qiqihar, 161006, Heilongjiang, China
| | - Jing Wang
- College of Pharmacy, Qiqihar Medical University, 333 Bukui Street, Qiqihar, 161006, Heilongjiang, China
| | - Shuang Fu
- College of Pharmacy, Qiqihar Medical University, 333 Bukui Street, Qiqihar, 161006, Heilongjiang, China
| | - Lei Liu
- College of Pharmacy, Qiqihar Medical University, 333 Bukui Street, Qiqihar, 161006, Heilongjiang, China
| | - Song Chen
- College of Pharmacy, Qiqihar Medical University, 333 Bukui Street, Qiqihar, 161006, Heilongjiang, China.
| |
Collapse
|
18
|
Yao Z, Ge W, Guo M, Xiao K, Qiao Y, Cao Z, Wu HC. Ultrasensitive detection of thiophenol based on a water-soluble pyrenyl probe. Talanta 2018; 185:146-150. [DOI: 10.1016/j.talanta.2018.03.068] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/17/2018] [Accepted: 03/22/2018] [Indexed: 11/16/2022]
|
19
|
Zeng Z, Ji Z, Hu N, Chen S, Bai B, Wang H, Suo Y. Synchronous determination with double-wavelength by RP-HPLC-UV and optimization of ultrasound-assisted extraction of phenolic acids from Caragana species using response surface methodology. J Pharm Biomed Anal 2017; 140:182-189. [PMID: 28359966 DOI: 10.1016/j.jpba.2017.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/09/2017] [Accepted: 03/11/2017] [Indexed: 11/29/2022]
Abstract
The utilization of Caragana korshinskii Kom. (CK) is currently concentrated on its ecological and fuel functions. Little attention has been devoted to the analysis of their phenolic acid (PA) components. To obtain more data for further utilization of CK, a new analysis protocol was tested to determine PAs synchronously by RP-HPLC-UV with double-wavelength (280nm and 320nm) detection. Specifically, separation of PA components was performed on a Hypersil Gold C18 reverse phase column with gradient elution. A four-factor-three-level Box-Behnken design was implemented for optimization of PA extraction. The results demonstrated that CK were rich primarily in chlorogenic acid, vanillic acid, caffeic acid and rosmarinic acid. The total content of PAs in CK leaves was the highest compared with its other parts. The distribution of total flavonoid content of CK was leaves>flowers>bark, while that of the total phenolic content of CK was flowers>leaves>bark.
Collapse
Affiliation(s)
- Zhi Zeng
- Key Laboratory of Tibetan Medicine Research, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, 810008, China; University of Chinese Academy of Science, Beijing, 100049, China
| | - Zhongyin Ji
- Key Laboratory of Tibetan Medicine Research, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, 810008, China; University of Chinese Academy of Science, Beijing, 100049, China
| | - Na Hu
- Key Laboratory of Tibetan Medicine Research, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Shasha Chen
- Key Laboratory of Tibetan Medicine Research, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, 810008, China; University of Chinese Academy of Science, Beijing, 100049, China
| | - Bo Bai
- Key Laboratory of Tibetan Medicine Research, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, 810008, China; State Key Laboratory of Plateau Ecology and Agriculture (Qinghai University), Xining, 810016, China.
| | - Honglun Wang
- Key Laboratory of Tibetan Medicine Research, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, 810008, China; State Key Laboratory of Plateau Ecology and Agriculture (Qinghai University), Xining, 810016, China
| | - Yourui Suo
- Key Laboratory of Tibetan Medicine Research, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, 810008, China; State Key Laboratory of Plateau Ecology and Agriculture (Qinghai University), Xining, 810016, China
| |
Collapse
|
20
|
You J, Dou K, Song C, Li G, Sun Z, Zhang S, Chen G, Zhao X, Hu N, Zhou W. 3-(2-Bromoacetamido)-N-(9-ethyl-9H)-carbazol fluorescent probe and its application for the determination of thiophenols in rubber products by HPLC with fluorescence detection and atmospheric chemical ionization mass spectrometry identification. J Sep Sci 2017; 40:2528-2540. [PMID: 28371096 DOI: 10.1002/jssc.201601166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/18/2017] [Accepted: 03/24/2017] [Indexed: 11/08/2022]
Abstract
A rapid, sensitive, and selective precolumn derivatization method for the simultaneous determination of eight thiophenols using 3-(2-bromoacetamido)-N-(9-ethyl-9H)-carbazol as a labeling reagent by high-performance liquid chromatography with fluorescence detection has been developed. The labeling reagent reacted with thiophenols at 50°C for 50 min in aqueous acetonitrile in the presence of borate buffer (0.10 mol/L, pH 11.2) to give high yields of thiophenol derivatives. The derivatives were identified by online postcolumn mass spectrometry. The collision-induced dissociation spectra for thiophenol derivatives gave the corresponding specific fragment ions at m/z 251.3, 223.3, 210.9, 195.8, and 181.9. At the same time, derivatives exhibited intense fluorescence with an excitation maximum at λex = 276 nm and an emission maximum at λem = 385 nm. Excellent linear responses were observed for all analytes over the range of 0.033-6.66 μmol/L with correlation coefficients of more than 0.9997. Detection limits were in the range of 0.94-5.77 μg/L with relative standard deviations of less than 4.54%. The feasibility of derivatization allowed the development of a rapid and highly sensitive method for the quantitative analysis of trace levels of thiophenols from some rubber products. The average recoveries (n = 3) were in the range of 87.21-101.12%.
Collapse
Affiliation(s)
- Jinmao You
- Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, Shandong, P. R. China.,Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, P. R. China
| | - Kun Dou
- Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, Shandong, P. R. China
| | - Cuihua Song
- Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, Shandong, P. R. China
| | - Guoliang Li
- Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, Shandong, P. R. China
| | - Zhiwei Sun
- Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, Shandong, P. R. China
| | - Shijuan Zhang
- Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, Shandong, P. R. China
| | - Guang Chen
- Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, Shandong, P. R. China
| | - Xianen Zhao
- Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, Shandong, P. R. China
| | - Na Hu
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, P. R. China
| | - Wu Zhou
- State key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, P. R. China
| |
Collapse
|
21
|
Lv Z, Sun Z, Song C, Lu S, Chen G, You J. Sensitive and background-free determination of thiols from wastewater samples by MOF-5 extraction coupled with high-performance liquid chromatography with fluorescence detection using a novel fluorescence probe of carbazole-9-ethyl-2-maleimide. Talanta 2016; 161:228-237. [DOI: 10.1016/j.talanta.2016.08.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 08/02/2016] [Accepted: 08/16/2016] [Indexed: 12/19/2022]
|