1
|
Ru G, Liu X, Ge Y, Wang L, Jiang L, Pielak G, Liu M, Li C. Trimethylamine N-oxide (TMAO) doubly locks the hydrophobic core and surfaces of protein against desiccation stress. Protein Sci 2024; 33:e5107. [PMID: 38989549 PMCID: PMC11237552 DOI: 10.1002/pro.5107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/14/2024] [Accepted: 06/23/2024] [Indexed: 07/12/2024]
Abstract
Interactions between proteins and osmolytes are ubiquitous within cells, assisting in response to environmental stresses. However, our understanding of protein-osmolyte interactions underlying desiccation tolerance is limited. Here, we employ solid-state NMR (ssNMR) to derive information about protein conformation and site-specific interactions between the model protein, SH3, and the osmolyte trimethylamine N-oxide (TMAO). The data show that SH3-TMAO interactions maintain key structured regions during desiccation and facilitate reversion to the protein's native state once desiccation stress is even slightly relieved. We identify 10 types of residues at 28 sites involved in the SH3-TMAO interactions. These sites comprise hydrophobic, positively charged, and aromatic amino acids located in SH3's hydrophobic core and surface clusters. TMAO locks both the hydrophobic core and surface clusters through its zwitterionic and trimethyl ends. This double locking is responsible for desiccation tolerance and differs from ideas based on exclusion, vitrification, and water replacement. ssNMR is a powerful tool for deepening our understanding of extremely weak protein-osmolyte interactions and providing insight into the evolutionary mechanism of environmental tolerance.
Collapse
Affiliation(s)
- Geying Ru
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaoli Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Yuwei Ge
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Liying Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Ling Jiang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Gary Pielak
- Department of Chemistry, Department of Biochemistry & Biophysics, Lineberger Cancer Center, Integrative Program for Biological and Genome Sciences of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Ribeiro TS, Scramin JA, Rodrigues JAS, Bernardes Filho R, Colnago LA, Forato LA. 13C ss-NMR Singular value decomposition and fitting for sorghum proteins conformation elucidation. POLIMEROS 2022. [DOI: 10.1590/0104-1428.20210082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Li Q, Ning X, Wang Y, Zhu Q, Guo Y, Li H, Zhou Y, Kou Z. The Integrity of α-β-α Sandwich Conformation Is Essential for a Novel Adjuvant TFPR1 to Maintain Its Adjuvanticity. Biomolecules 2019; 9:biom9120869. [PMID: 31842458 PMCID: PMC6995627 DOI: 10.3390/biom9120869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/30/2022] Open
Abstract
TFPR1 is a novel peptide vaccine adjuvant we recently discovered. To define the structural basis and optimize its application as an adjuvant, we designed three different truncated fragments that have removed dominant B epitopes on TFPR1, and evaluated their capacity to activate bone marrow-derived dendritic cells and their adjuvanticity. Results demonstrated that the integrity of an α-β-α sandwich conformation is essential for TFPR1 to maintain its immunologic activity and adjuvanticity. We obtained a functional truncated fragment TFPR-ta ranging from 40-168 aa of triflin that has similar adjuvanticity as TFPR1 but with 2-log fold lower immunogenicity. These results demonstrated a novel approach to evaluate and improve the activity of protein-based vaccine adjuvant.
Collapse
Affiliation(s)
- Qiao Li
- Beijing Institute of Microbiology and Epidemiology, Anhui Medical University, Hefei 230032, China; (Q.L.); (Y.W.)
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (X.N.); (Q.Z.); (Y.G.); (H.L.); (Y.Z.)
| | - Xiuzhe Ning
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (X.N.); (Q.Z.); (Y.G.); (H.L.); (Y.Z.)
| | - Yuepeng Wang
- Beijing Institute of Microbiology and Epidemiology, Anhui Medical University, Hefei 230032, China; (Q.L.); (Y.W.)
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (X.N.); (Q.Z.); (Y.G.); (H.L.); (Y.Z.)
| | - Qing Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (X.N.); (Q.Z.); (Y.G.); (H.L.); (Y.Z.)
| | - Yan Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (X.N.); (Q.Z.); (Y.G.); (H.L.); (Y.Z.)
| | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (X.N.); (Q.Z.); (Y.G.); (H.L.); (Y.Z.)
| | - Yusen Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (X.N.); (Q.Z.); (Y.G.); (H.L.); (Y.Z.)
| | - Zhihua Kou
- Beijing Institute of Microbiology and Epidemiology, Anhui Medical University, Hefei 230032, China; (Q.L.); (Y.W.)
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (X.N.); (Q.Z.); (Y.G.); (H.L.); (Y.Z.)
- Correspondence: ; Tel.: +86-10-63858045
| |
Collapse
|
4
|
Bottorf L, Sahu ID, McCarrick RM, Lorigan GA. Utilization of 13C-labeled amino acids to probe the α-helical local secondary structure of a membrane peptide using electron spin echo envelope modulation (ESEEM) spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2018; 1860:1447-1451. [PMID: 29694834 PMCID: PMC5957090 DOI: 10.1016/j.bbamem.2018.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/27/2018] [Accepted: 04/09/2018] [Indexed: 11/22/2022]
Abstract
Electron spin echo envelope modulation (ESEEM) spectroscopy in combination with site-directed spin labeling (SDSL) has been established as a valuable biophysical technique to provide site-specific local secondary structure of membrane proteins. This pulsed electron paramagnetic resonance (EPR) method can successfully distinguish between α-helices, β-sheets, and 310-helices by strategically using 2H-labeled amino acids and SDSL. In this study, we have explored the use of 13C-labeled residues as the NMR active nuclei for this approach for the first time. 13C-labeled d5-valine (Val) or 13C-labeled d6-leucine (Leu) were substituted at a specific Val or Leu residue (i), and a nitroxide spin label was positioned 2 or 3 residues away (denoted i-2 and i-3) on the acetylcholine receptor M2δ (AChR M2δ) in a lipid bilayer. The 13C ESEEM peaks in the FT frequency domain data were observed for the i-3 samples, and no 13C peaks were observed in the i-2 samples. The resulting spectra were indicative of the α-helical local secondary structure of AChR M2δ in bicelles. This study provides more versatility and alternative options when using this ESEEM approach to study the more challenging recombinant membrane protein secondary structures.
Collapse
Affiliation(s)
- Lauren Bottorf
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, United States
| | - Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, United States
| | - Robert M McCarrick
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, United States
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, United States.
| |
Collapse
|
5
|
Diuk Andrade F, Newson WR, Bernardinelli OD, Rasheed F, Cobo MF, Plivelic TS, Ribeiro deAzevedo E, Kuktaite R. An insight into molecular motions and phase composition of gliadin/glutenin glycerol blends studied by 13
C solid-state and 1
H time-domain NMR. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/polb.24586] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Fabiana Diuk Andrade
- Instituto de Física de São Carlos; Universidade de São Paulo, CP 369; São Carlos SP 13660-970 Brazil
| | - William R. Newson
- Department of Plant Breeding; The Swedish University of Agricultural Sciences, P. O. Box 101; Alnarp SE-230 53 Sweden
| | | | - Faiza Rasheed
- Department of Plant Breeding; The Swedish University of Agricultural Sciences, P. O. Box 101; Alnarp SE-230 53 Sweden
| | - Márcio Fernando Cobo
- Instituto de Física de São Carlos; Universidade de São Paulo, CP 369; São Carlos SP 13660-970 Brazil
| | - Tomás S. Plivelic
- MAX IV Laboratory; Lund University, Fotongatan 2; Lund SE-225 92 Sweden
| | - Eduardo Ribeiro deAzevedo
- Instituto de Física de São Carlos; Universidade de São Paulo, CP 369; São Carlos SP 13660-970 Brazil
| | - Ramune Kuktaite
- Department of Plant Breeding; The Swedish University of Agricultural Sciences, P. O. Box 101; Alnarp SE-230 53 Sweden
| |
Collapse
|