1
|
Fan X, Wu J, Zhang T, Liu J. Electrochemical/Electrochemiluminescence Sensors Based on Vertically-Ordered Mesoporous Silica Films for Biomedical Analytical Applications. Chembiochem 2024:e202400320. [PMID: 38874487 DOI: 10.1002/cbic.202400320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/15/2024]
Abstract
Vertically-ordered mesoporous silica films (VMSF, also named as silica isoporous membranes) have shown tremendous potential in the field of electroanalytical sensors due to their unique features in terms of controllable and ultrasmall nanopores, high molecular selectivity and permeability, and mechanical stability. This review will present the recent progress on the biomedical analytical applications of VMSF, focusing on the small biomolecules, diseases-related biomarkers, drugs and cancer cells. Finally, conclusions with recent developments and future perspective of VMSF in the relevant fields will be envisioned.
Collapse
Affiliation(s)
- Xue Fan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jiayi Wu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Tongtong Zhang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Hangzhou, 310006, China
| | - Jiyang Liu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
2
|
Luan Y, Zhou Y, Li C, Wang H, Zhou Y, Wang Q, He X, Huang J, Liu J, Yang X, Wang K. Wearable Sensing Device Integrated with Prestored Reagents for Cortisol Detection in Sweat. ACS Sens 2024; 9:2075-2082. [PMID: 38557006 DOI: 10.1021/acssensors.4c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Wearable sweat sensors have achieved rapid development since they hold great potential in personalized health monitoring. However, a typical difficulty in practical processes is the control of working conditions for biorecognition elements, e.g., pH level and ionic strength in sweat may decrease the affinity between analytes and recognition elements. Here, we developed a wearable sensing device for cortisol detection in sweat using an aptamer as the recognition element. The device integrated functions of sweat collection, reagent prestorage, and signal conversion. Especially, the components of prestored reagents were optimized according to the inherent characteristics of sweat samples and electrodes, which allowed us to keep optimal conditions for aptamers. The sweat samples were transferred from the inlet of the device to the reagent prestored chamber, and the dry preserved reagents were rehydrated with sweat and then arrived at the aptamer-modified electrodes. Sweat samples of volunteers were analyzed by the wearable sensing device, and the results showed a good correlation with those of the ELISA kit. We believe that this convenient and reliable wearable sensing device has significant potential in self-health monitoring.
Collapse
Affiliation(s)
- Yanan Luan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Yuting Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Canjuan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Hongqiang Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Yuan Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| |
Collapse
|
3
|
Tananaiko O, Walcarius A. Composite Silica-Based Films as Platforms for Electrochemical Sensors. CHEM REC 2024; 24:e202300194. [PMID: 37737456 DOI: 10.1002/tcr.202300194] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/29/2023] [Indexed: 09/23/2023]
Abstract
Sol-gel-derived silica thin films generated onto electrode surfaces in the form of organic-inorganic hybrid coatings or other composite layers have found tremendous interest for being used as platforms for the development of electrochemical sensors and biosensors. After a brief description of the strategies applied to prepare such materials, and their interest as electrode modifier, this review will summarize the major advances made so far with composite silica-based films in electroanalysis. It will primarily focus on electrochemical sensors involving both non-ordered composite films and vertically oriented mesoporous membranes, the biosensors exploiting the concept of sol-gel bioencapsulation on electrode, the spectroelectrochemical sensors, and some others.
Collapse
Affiliation(s)
- Oksana Tananaiko
- Department of Analytical Chemistry, National Taras Shevchenko University of Kyiv, Volodymyrska Str., 64, Kyiv, Ukraine, 01601
| | | |
Collapse
|
4
|
Chen H, Huang J, Zhang R, Yan F. Dual-mode electrochemiluminescence and electrochemical sensor for alpha-fetoprotein detection in human serum based on vertically ordered mesoporous silica films. Front Chem 2022; 10:1023998. [PMID: 36419588 PMCID: PMC9676975 DOI: 10.3389/fchem.2022.1023998] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022] Open
Abstract
In this study, we demonstrated the highly sensitive detection of alpha-fetoprotein (AFP) by electrochemiluminescence (ECL) and electrochemistry (EC) based on the gated transport of the bifunctional probe (tris(1,10-phenanthroline) ruthenium (II) chloride, Ru (phen)3Cl2) into the nanochannels of vertically ordered mesoporous silica films (VMSFs). Due to the negatively charged surface and ultrasmall pore size, VMSF displays a signal amplification effect on Ru (phen)3Cl2 and is suitable for the construction of sensors with excellent sensitivity. With the linkage of (3-glycidyloxypropyl) trimethoxysilane, the anti-AFP antibody could covalently bind to the external surface of VMSF, generating a highly specific recognized sensing interface toward AFP. When AFP is presented, the formed immunocomplex hinders the diffusion of Ru (phen)3Cl2 to the underlying electrode surface, resulting in a decreased ECL or EC response. The dual-mode detection of AFP is achieved with a relatively low limit of detection (0.56 fg/ml for ECL and 4.5 pg/ml for EC) and a wide linear range (10 fg/ml∼1 μg/ml for ECL and 10 pg/ml∼1 μg/ml for EC). Moreover, owing to the inherent anti-fouling property of VMSF, satisfactory results in the analysis of human serum were obtained, showing the great potential of the designed strategy in clinical diagnosis.
Collapse
Affiliation(s)
- Haiyun Chen
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Huang
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Rongjing Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Rongjing Zhang, ; Fei Yan,
| | - Fei Yan
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
- *Correspondence: Rongjing Zhang, ; Fei Yan,
| |
Collapse
|
5
|
Azimzadeh M, Aghili Z, Jannat B, Jafari S, Rafizadeh Tafti S, Nasirizadeh N. Nanocomposite of electrochemically reduced graphene oxide and gold nanourchins for electrochemical DNA detection. IET Nanobiotechnol 2022; 16:190-198. [PMID: 35442560 PMCID: PMC9178657 DOI: 10.1049/nbt2.12086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/24/2022] [Accepted: 04/02/2022] [Indexed: 12/19/2022] Open
Abstract
A nanocomposite of graphene oxide and gold nanourchins has been used here to modify the surface of a screen‐printed carbon electrode to enhance the sensitivity of the electrochemical DNA detection system. A specific single‐stranded DNA probe was designed based on the target DNA sequence and was thiolated to be self‐assembled on the surface of the gold nanourchins placed on the modified electrode. Doxorubicin was used as an electrochemical label to detect the DNA hybridisation using differential pulse voltammetry (DPV). The assembling process was confirmed using scanning electron microscopy (SEM) imaging, cyclic voltammetry (CV), and the EIS method. The high sensitivity of the proposed system led to a low detection limit of 0.16 fM and a wide linear range from 0.5 to 950.0 fM. The specificity of the DNA hybridisation and the signalling molecule (haematoxylin) caused very high selectivity towards the target DNA than other non‐specific sequences.
Collapse
Affiliation(s)
- Mostafa Azimzadeh
- Halal Research Center of IRI, MOH, Tehran, Iran.,Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zahra Aghili
- Food & Drug Control Reference Laboratories Center, FDA, MOH, Tehran, Iran
| | | | - Saeid Jafari
- Department of Textile and Polymer Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Saeed Rafizadeh Tafti
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Navid Nasirizadeh
- Halal Research Center of IRI, MOH, Tehran, Iran.,Department of Textile and Polymer Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
| |
Collapse
|
6
|
Ma K, Yang L, Liu J, Liu J. Electrochemical Sensor Nanoarchitectonics for Sensitive Detection of Uric Acid in Human Whole Blood Based on Screen-Printed Carbon Electrode Equipped with Vertically-Ordered Mesoporous Silica-Nanochannel Film. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1157. [PMID: 35407275 PMCID: PMC9000518 DOI: 10.3390/nano12071157] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/21/2022]
Abstract
Screen-printed carbon electrodes (SPCEs) bear great potential in the detection of biomarker in clinical samples with low sample consumption. However, modification of electrode surfaces to improve the anti-interference ability and sensitivity is highly desirable for direct electroanalysis of whole blood samples. Here, a reliable and miniaturized electrochemical sensor is demonstrated based on SPCE equipped with vertically-ordered mesoporous silica-nanochannel film (VMSF). To achieve stable binding of VMSF and improve the electrocatalytic performance, electrochemically reduced graphene oxide (ErGO) is applied as a conductive adhesion layer, that is in situ reduced from GO nanosheets during fast growth (less than 10 s) of amino groups modified VMSF (NH2-VMSF) using electrochemically assisted self-assembly (EASA). In comparison with bare SPCE, NH2-VMSF/ErGO/SPCE exhibits decreased oxidation potential of uric acid (UA) by 147 mV owing to significant electrocatalytic ability of ErGO. The dual signal amplification based on electrocatalysis of ErGO and enrichment of nanochannels leads to enhanced peak current by 3.9 times. Thus, the developed NH2-VMSF/ErGO/SPCE sensor enables sensitive detection of UA in the range from 0.5 μM to 180 μM with a low limit of detection (LOD, 129 nM, S/N = 3). Owing to good anti-fouling ability and high selectivity of the sensor, direct and rapid detection of UA in human whole blood is realized with very low sample consumption (50 μL).
Collapse
Affiliation(s)
- Kai Ma
- Urology and Lithotripsy Center, Peking University People’s Hospital, Beijing 100044, China; (K.M.); (J.L.)
- Peking University Applied Lithotripsy Institute, Peking University, Beijing 100044, China
| | - Luoxing Yang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| | - Jun Liu
- Urology and Lithotripsy Center, Peking University People’s Hospital, Beijing 100044, China; (K.M.); (J.L.)
- Peking University Applied Lithotripsy Institute, Peking University, Beijing 100044, China
| | - Jiyang Liu
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| |
Collapse
|
7
|
Cheng L, He Y, Yang Y, Chen J, He H, Liu Y, Lin Z, Hong G. Highly reproducible and sensitive electrochemical biosensor for Chlamydia trachomatis detection based on duplex-specific nuclease-assisted target-responsive DNA hydrogels and bovine serum albumin carrier platform. Anal Chim Acta 2022; 1197:339496. [DOI: 10.1016/j.aca.2022.339496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 01/23/2023]
|
8
|
Ullah W, Herzog G, Vilà N, Walcarius A. Polyaniline nanowire arrays generated through oriented mesoporous silica films: effect of pore size and spectroelectrochemical response. Faraday Discuss 2021; 233:77-99. [PMID: 34889333 DOI: 10.1039/d1fd00034a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Indium-tin oxide electrodes modified with vertically aligned silica nanochannel membranes have been produced by electrochemically assisted self-assembly of cationic surfactants (cetyl- or octadecyl-trimethylammonium bromide) and concomitant polycondensation of the silica precursors (tetraethoxysilane). They exhibited pore diameters in the 2-3 nm range depending on the surfactant used. After surfactant removal, the bottom of mesopores was derivatized with aminophenyl groups via electrografting (i.e., electrochemical reduction of in situ generated aminophenyl monodiazonium salt). These species covalently bonded to the ITO substrate were then exploited to grow polyaniline nanofilaments by electropolymerization of aniline through the nanochannels. Under potentiostatic conditions, the length of polyaniline wires is controllable by tuning the electropolymerization time. From cyclic voltammetry characterization performed either before or after dissolution of the silica template, it appeared that both the polyaniline/silica composite and the free polyaniline nanowire arrays were electroactive, yet with much larger peak currents in the latter case as a result of larger effective surface area offered to the electrolyte solution. At identical electropolymerization time, the amount of deposited polyaniline was larger when using the silica membrane with larger pore diameter. All polyaniline deposits exhibited electrochromic properties. However, the spectroelectrochemical data indicated more complete interconversion between the coloured oxidized form and colourless reduced polyaniline for the arrays of nanofilaments in comparison to bulky films. In addition, the template-free nanowire arrays (i.e., after silica dissolution) were characterized by faster electrochromic behaviour than the polyaniline/silica hybrid, confirming the potential interest of such polyaniline nano-brushes for practical applications.
Collapse
Affiliation(s)
- Wahid Ullah
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, CNRS - Université de Lorraine, 405 Rue de Vandoeuvre, Villers-lès-Nancy, F-54600, France.
| | - Grégoire Herzog
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, CNRS - Université de Lorraine, 405 Rue de Vandoeuvre, Villers-lès-Nancy, F-54600, France.
| | - Neus Vilà
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, CNRS - Université de Lorraine, 405 Rue de Vandoeuvre, Villers-lès-Nancy, F-54600, France.
| | - Alain Walcarius
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, CNRS - Université de Lorraine, 405 Rue de Vandoeuvre, Villers-lès-Nancy, F-54600, France.
| |
Collapse
|
9
|
Walcarius A. Electroinduced Surfactant Self-Assembly Driven to Vertical Growth of Oriented Mesoporous Films. Acc Chem Res 2021; 54:3563-3575. [PMID: 34469107 DOI: 10.1021/acs.accounts.1c00233] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Supramolecular soft-templating approaches to mesoporous materials have revolutionized the generation of regular nanoarchitectures exhibiting unique features such as uniform pore structure with tunable dimensions, large surface area, and high pore volume, variability of composition, and/or ease of functionalization with a wide range of organo-functional groups or good hosts for the in situ synthesis of nano-objects. One appealing concept in this field is the development of ordered mesoporous thin films as such a configuration has proven to be essential for various applications including separation, sensing, catalysis (electro and photo), energy conversion and storage, photonics, solar cells, photo- and electrochromism, and low-k dielectric coatings for microelectronics, bio and nanobio devices, or biomimetic surfaces. Supported or free-standing mesoporous films are mostly prepared by evaporation induced self-assembly methods, thanks to their good processing capability and flexibility to manufacture mesostructured oxides and organic-inorganic hybrids films with periodically organized porosity.One important challenge is the control of pore orientation, especially in one-dimensional nanostructures, which is not straightforward from the above evaporation induced self-assembly methods. Accessibility of the pores represents another critical issue, which can be basically ensured in the event of effective interconnections between the pores, but the vertical alignment of mesopore channels will definitely offer the best configuration to secure the most efficient transfer processes through the mesoporous membranes. The orthogonal growth of mesochannels is however not thermodynamically favored, requiring the development of methods enabling self-organization through nonequilibrium states. We found that electrochemistry afforded a real boon to tackle this problem via the electrochemically assisted self-assembly (EASA) method, which not only provides a fast and versatile way to generate highly ordered and hexagonally packed mesopore channels but also constitutes a real platform for the development of functionalized oriented films carrying a wide range of organo-functional groups of adjustable composition and properties.This Account introduces the EASA concept and discusses its development along with the significant progress made from its discovery, notably in view of recent advances on the functionalization of oriented mesoporous silica films, which expand their fields of application. EASA is based on the in situ combination of electrochemically triggered pH-induced polycondensation of silica precursors with electrochemical interfacial surfactant templating, leading to the very fast (a few seconds) growth of vertically aligned silica walls through self-assembly around surfactant hemimicelles transiently formed onto the underlying support. This method benefits from the possibility to deposit uniform thin films onto surfaces of different natures and complex morphologies including at the microscale. From this discovery, our research expanded to cover domains beyond the simple production of bare silica films, turning to the challenge of incorporation and exploitation of organo-functional groups or nanofilaments. So far, the great majority of methods developed for the functionalization of mesoporous silica is based on postsynthesis grafting or co-condensation approaches, which suffer from serious limitations with oriented films (pore blocking, lack of ordering). We demonstrated the uniqueness of EASA combined with click chemistry to afford a versatile and universal route to oriented mesoporous films bearing organo-functional groups of multiple composition. This opened perspectives for future developments and applications, some of which (sensing, permselective coatings, energy storage, electrocatalysis, electrochromism) are also considered in this Account.
Collapse
Affiliation(s)
- Alain Walcarius
- Université de Lorraine, CNRS, Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l’Environnement (LCPME), 405 Rue de Vandoeuvre, F-54000 Nancy, France
| |
Collapse
|
10
|
Ito T, Nathani A. Electrochemical sensing at nanoporous film‐coated electrodes. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Takashi Ito
- Department of Chemistry Kansas State University Manhattan Kansas USA
| | - Akash Nathani
- Department of Chemistry Kansas State University Manhattan Kansas USA
| |
Collapse
|
11
|
Yáñez-Sedeño P, González-Cortés A, Campuzano S, Pingarrón JM. Multimodal/Multifunctional Nanomaterials in (Bio)electrochemistry: Now and in the Coming Decade. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2556. [PMID: 33352731 PMCID: PMC7766190 DOI: 10.3390/nano10122556] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 01/15/2023]
Abstract
Multifunctional nanomaterials, defined as those able to achieve a combined effect or more than one function through their multiple functionalization or combination with other materials, are gaining increasing attention in the last years in many relevant fields, including cargo targeted delivery, tissue engineering, in vitro and/or in vivo diseases imaging and therapy, as well as in the development of electrochemical (bio)sensors and (bio)sensing strategies with improved performance. This review article aims to provide an updated overview of the important advances and future opportunities exhibited by electrochemical biosensing in connection to multifunctional nanomaterials. Accordingly, representative aspects of recent approaches involving metal, carbon, and silica-based multifunctional nanomaterials are selected and critically discussed, as they are the most widely used multifunctional nanomaterials imparting unique capabilities in (bio)electroanalysis. A brief overview of the main remaining challenges and future perspectives in the field is also provided.
Collapse
Affiliation(s)
- Paloma Yáñez-Sedeño
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain; (A.G.-C.); (J.M.P.)
| | | | - Susana Campuzano
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain; (A.G.-C.); (J.M.P.)
| | | |
Collapse
|
12
|
Yan F, Ma X, Jin Q, Tong Y, Tang H, Lin X, Liu J. Phenylboronic acid-functionalized vertically ordered mesoporous silica films for selective electrochemical determination of fluoride ion in tap water. Mikrochim Acta 2020; 187:470. [DOI: 10.1007/s00604-020-04422-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/30/2020] [Indexed: 02/01/2023]
|
13
|
Li X, Zhou L, Ding J, Sun L, Su B. Platinized Silica Nanoporous Membrane Electrodes for Low‐Fouling Hydrogen Peroxide Detection. ChemElectroChem 2020. [DOI: 10.1002/celc.202000321] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xinru Li
- Department of ChemistryZhejiang University Hangzhou 310058 China
| | - Lin Zhou
- Department of ChemistryZhejiang University Hangzhou 310058 China
| | - Jialian Ding
- Department of ChemistryZhejiang University Hangzhou 310058 China
| | - Lei Sun
- Department of ChemistryZhejiang University Hangzhou 310058 China
| | - Bin Su
- Department of ChemistryZhejiang University Hangzhou 310058 China
| |
Collapse
|
14
|
Montmorillonite clay-modified disposable ink-jet-printed graphene electrode as a sensitive voltammetric sensor for the determination of cadmium(II) and lead(II). SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2283-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
15
|
Zhou P, Yao L, Chen K, Su B. Silica Nanochannel Membranes for Electrochemical Analysis and Molecular Sieving: A Comprehensive Review. Crit Rev Anal Chem 2019; 50:424-444. [DOI: 10.1080/10408347.2019.1642735] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ping Zhou
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Lina Yao
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Kexin Chen
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Roushani M, Ghanbari K. An electrochemical aptasensor for streptomycin based on covalent attachment of the aptamer onto a mesoporous silica thin film-coated gold electrode. Mikrochim Acta 2019; 186:115. [PMID: 30649623 DOI: 10.1007/s00604-018-3191-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 12/15/2018] [Indexed: 10/27/2022]
Abstract
An electrochemical method is described for the determination of streptomycin (STR). It is making use of a gold electrode coated with a thin mesoporous silica film (MSF). In addition, silver nanoparticles were coated on the MSF to increase the surface area, to bind a large amount of aptamer (Apt), and to improve the electrical conductivity. In the presence of STR, it will bind to the Apt and hinder the diffusion of the redox probe hexacyanoferrate through the nanochannels of the mesoporous film. The aptasensor, best operated at a working potential of 0.22 V (vs. Ag/AgCl) has a linear response in the 1 fg.mL-1 to 6.2 ng.mL-1 STR concentration range. The detection limit is 0.33 fg.mL-1. The assay was successfully validated by analyzing spiked samples of milk and blood serum. Graphical abstract Voltammetric assay of streptomycin (STR) by using a Fe(CN)63-/4- probe. The aptamer was immobilized on a gold electrode modified with a mesoporous silica thin film (MSF) that was functionalized with (3-aminopropyl) triethoxysilane (APTES) and silver nanoparticles (AgNP). Incubation with STR leads to a decrease of the current.
Collapse
Affiliation(s)
- Mahmoud Roushani
- Department of Chemistry, Faculty of Sciences, Ilam University, Ilam, Iran.
| | - Kazhal Ghanbari
- Department of Chemistry, Faculty of Sciences, Ilam University, Ilam, Iran
| |
Collapse
|
17
|
Three-dimensional mesoporous silica networks with improved diffusion and interference-abating properties for electrochemical sensing. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.08.131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Nasir T, Vodolazkaya NA, Herzog G, Walcarius A. Critical Effect of Film Thickness on Preconcentration Electroanalysis with Oriented Mesoporous Silica Modified Electrodes. ELECTROANAL 2018. [DOI: 10.1002/elan.201800533] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Tauqir Nasir
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME); UMR7564 CNRS-Université de Lorraine; 405 rue de Vandoeuvre 54600 Villers-les-Nancy France
| | - Natalya A. Vodolazkaya
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME); UMR7564 CNRS-Université de Lorraine; 405 rue de Vandoeuvre 54600 Villers-les-Nancy France
- Chemical Faculty; Department of Physical Chemistry; V.N. Karazin Kharkov National University; 61022 Kharkov Ukraine
| | - Grégoire Herzog
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME); UMR7564 CNRS-Université de Lorraine; 405 rue de Vandoeuvre 54600 Villers-les-Nancy France
| | - Alain Walcarius
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME); UMR7564 CNRS-Université de Lorraine; 405 rue de Vandoeuvre 54600 Villers-les-Nancy France
| |
Collapse
|
19
|
Pifferi V, Rimoldi L, Meroni D, Segrado F, Soliveri G, Ardizzone S, Falciola L. Electrochemical characterization of insulating silica-modified electrodes: Transport properties and physicochemical features. Electrochem commun 2017. [DOI: 10.1016/j.elecom.2017.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|