1
|
Xiao H, Wang Y, Zhao Y, Zhang R, Kang K, Feng Y, Gao Y, Guo H, Lu B, Du P, Lu X. Insight into the charge transfer behavior of an electrochemiluminescence sensor based on porphyrin-coumarin derivatives with a donor-acceptor configuration. Chem Sci 2024:d4sc04274c. [PMID: 39323528 PMCID: PMC11417949 DOI: 10.1039/d4sc04274c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024] Open
Abstract
The excellent photophysical and electrochemical properties of porphyrins have inspired widespread interest in the realm of electrochemiluminescence (ECL). The aggregation-caused deficiency of ECL emission in aqueous solution, however, still severely impedes further applications. Herein, a molecule with a donor-acceptor (D-A) configuration, ATPP-Cou, consisting of monoaminoporphyrin as an electron donor and coumarin as an electron acceptor, was designed as an ECL luminophore to address the susceptibility of the porphyrin to aggregation-caused quenching (ACQ) in aqueous solution. ATPP-Cou demonstrated a three-fold enhanced ECL signal compared to pristine ATPP. Despite the acknowledged significance of intramolecular charge transfer (ICT) in generating excited states in ECL, there is a lack of quantitative descriptions. Herein, intensity-modulated photocurrent spectroscopy (IMPS) and scanning photoelectrochemical microscopy (SPECM) were utilized to validate the influence of ICT on the enhancement performance of D-A type ECL molecules. Additionally, ATPP-Cou was also developed as a probe for the successful detection of Cu2+ in aqueous solution. The present study not only enriches the repertoire of efficient porphyrin-based ECL luminophores applicable in aqueous environments but also exemplifies the successful integration of novel measurement techniques to provide more comprehensive insights into the underlying mechanisms responsible for improved ECL performance.
Collapse
Affiliation(s)
- Hui Xiao
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (Ministry of Education), Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University Lanzhou 730070 P. R. China
| | - Yali Wang
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (Ministry of Education), Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University Lanzhou 730070 P. R. China
| | - Yaqi Zhao
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (Ministry of Education), Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University Lanzhou 730070 P. R. China
| | - Rongfang Zhang
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (Ministry of Education), Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University Lanzhou 730070 P. R. China
| | - Kainan Kang
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (Ministry of Education), Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University Lanzhou 730070 P. R. China
| | - Yanjun Feng
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (Ministry of Education), Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University Lanzhou 730070 P. R. China
| | - Yuling Gao
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (Ministry of Education), Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University Lanzhou 730070 P. R. China
| | - Huixia Guo
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (Ministry of Education), Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University Lanzhou 730070 P. R. China
| | - Bingzhang Lu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University Shanxi 710049 P. R. China
| | - Peiyao Du
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (Ministry of Education), Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University Lanzhou 730070 P. R. China
- School of Chemical Engineering and Technology, Xi'an Jiaotong University Shanxi 710049 P. R. China
| | - Xiaoquan Lu
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (Ministry of Education), Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University Lanzhou 730070 P. R. China
| |
Collapse
|
2
|
Liu T, Tao Q, Wang Y, Luo R, Ma J, Lei J. Tailored Cis-Trans Isomeric Metal-Covalent Organic Frameworks for Coordination Configuration-Dependent Electrochemiluminescence. J Am Chem Soc 2024; 146:18958-18966. [PMID: 38952302 DOI: 10.1021/jacs.4c02015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Precise manipulation of the coordination configuration within substances can modulate the band structure and catalytic properties of the target material. Metal-covalent organic frameworks (MCOFs), a crystal material amalgamating the benefits of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), can integrate a predetermined coordination environment into the frameworks for amplifying the catalytic effect. In this study, we delicately synthesize isomeric MCOFs using bis(glycinato)copper as the aminoligand via kinetically and thermodynamically favorable pathways to yield cis-MCOF and trans-MCOF products, respectively, thereby introducing a cis-trans isomeric coordination field into the framework. Moreover, the twisted skeleton derived from the flexibility of amino acid and β-ketoenamine linkages endows trans-MCOF with surprising water dispersibility. Compared to cis-MCOF, the trans isomerism displays a significant enhancement in cathodic electrochemiluminescence via the catalysis of Cu nodes toward K2S2O8. The density of states analysis shows that the d-band center of trans-MCOF is closer to the Fermi level, leading to more stable adsorption binding to promote the catalysis. This study is the first report on constructing predesign coordination configuration MCOFs via an easy-handling method, which gives the guidelines for the design of amino acid-based MCOF materials.
Collapse
Affiliation(s)
- Tianrui Liu
- State Key Laboratory of Analytical Chemistry for Life Science, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qiantu Tao
- State Key Laboratory of Analytical Chemistry for Life Science, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yufei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Rengan Luo
- State Key Laboratory of Analytical Chemistry for Life Science, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing Ma
- State Key Laboratory of Analytical Chemistry for Life Science, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Huang J, Dong R, Habibul M, Zhang Y, Guan M, Li G. An electrochemiluminescence aptasensor based on poly(aniline-luminol)/graphene oxide/chitosan for ultra-sensitive detection of Hg2+. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04687-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
4
|
Zhu W, Cai W, Yin Z, Cheng M, Kong Y. Self‐assembly of covalent porphyrin compound and its enhanced electrochemiluminescence performance. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wen‐Kai Zhu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology School of Petrochemical Engineering, Changzhou University Changzhou P. R. China
| | - Wen‐Rong Cai
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology School of Petrochemical Engineering, Changzhou University Changzhou P. R. China
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao China
| | - Zhen‐Zhi Yin
- College of Chemical Sciences and Engineering Jiaxing University Jiaxing P. R. China
| | - Ming‐Jie Cheng
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology School of Petrochemical Engineering, Changzhou University Changzhou P. R. China
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology School of Petrochemical Engineering, Changzhou University Changzhou P. R. China
| |
Collapse
|
5
|
Wang H, Mu W, Liu Y, Lu Y, Qiu Y, Ma Q. An innovative study on the "on-off-on" detection of sulfur ions based on a TSPP-riboflavin fluorescent probe. RSC Adv 2022; 12:5871-5877. [PMID: 35424537 PMCID: PMC8982097 DOI: 10.1039/d1ra08986b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/08/2022] [Indexed: 11/30/2022] Open
Abstract
In this paper, 5,10,15,20-(4-sulphonatophenyl) porphyrin (TSPP) was synthesized by a facile route and used as a fluorescent probe to construct a sensor system based on the high water solubility and high quantum yield. It was found that when riboflavin (RF) was introduced into the TSPP solution, the fluorescence intensity of TSPP decreased for the peaks at 645 nm and 700 nm based on the principle of the electrostatic attractions and hydrophobic interactions between TSPP and riboflavin. When the fluorescence emission peak of riboflavin appeared at 550 nm, the fluorescence sensor system changed from the "on" state to the "off" state. When sulfur ions (S2-) were further introduced into the TSPP-riboflavin system, the fluorescence intensity of riboflavin was further decreased based on the specific reaction between S2- and riboflavin. However, the fluorescence signal of TSPP was restored and the fluorescence sensing system changed from the "off" state to the "on" state. Therefore, TSPP was used as a fluorescent probe to construct an "on-off-on" fluorescent sensing system, the linear range of S2- detected by this system is 5.0 × 10-9 to 3.6 × 10-5 M, and the detection limit (LOD) is 1.1 × 10-9 M. The sensing system has higher accuracy and sensitivity, and it can be successfully used in the sensing of S2- in real samples.
Collapse
Affiliation(s)
- Huan Wang
- Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, College of Pharmacy, Qinghai Nationalities University China
| | - Wencheng Mu
- Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, College of Pharmacy, Qinghai Nationalities University China
| | - Yuanyuan Liu
- Yinchuan City Center for Disease Control and Prevention Ningxia China
| | - Yongchang Lu
- Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, College of Pharmacy, Qinghai Nationalities University China
| | - Yuang Qiu
- Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, College of Pharmacy, Qinghai Nationalities University China
| | - Qin Ma
- Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, College of Pharmacy, Qinghai Nationalities University China
| |
Collapse
|
6
|
Zhang Y, Zhao Y, Han Z, Zhang R, Du P, Wu Y, Lu X. Switching the Photoluminescence and Electrochemiluminescence of Liposoluble Porphyrin in Aqueous Phase by Molecular Regulation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yinpan Zhang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province College of Chemistry & Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Yaqi Zhao
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province College of Chemistry & Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Zhengang Han
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province College of Chemistry & Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Ruizhong Zhang
- Tianjin Key Laboratory of Molecular Photoelectronic Sciences Department of Chemistry Tianjin University Tianjin 300072 China
| | - Peiyao Du
- Tianjin Key Laboratory of Molecular Photoelectronic Sciences Department of Chemistry Tianjin University Tianjin 300072 China
| | - Yanxia Wu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province College of Chemistry & Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province College of Chemistry & Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| |
Collapse
|
7
|
Industry Development of Derivative Functionalized Gold Nanomaterials and Their Application in Chemiluminescence Bioanalysis: Based on the Industrial Practice of China's Central Yunnan Urban Agglomeration. J CHEM-NY 2020. [DOI: 10.1155/2020/5474506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Electrochemiluminescence biosensor is an analytical method combining electrochemiluminescence technology with biosensor. Using nanomaterials as electrochemical luminescence sensor platform can not only immobilize a large number of biomolecules but also improve the performance of the sensor to realize the supersensitive detection of biomacromolecules. Although these methods have high sensitivity for bioanalysis, there are still some shortcomings which limit the practical application. Therefore, this paper discusses the development of functional gold nanomaterials industry and its application in chemiluminescence bioanalysis. In this paper, two methods of synthesizing luminescent functional gold nanomaterials at room temperature were studied by using chemiluminescent reagents as reducing agent and protective agent. Based on luminescent functionalized gold nanoparticles, immunoassay and DNA bioanalysis probes were constructed, and their applications in chemiluminescence and electrochemiluminescence bioanalysis were discussed. Finally, the simulation results show that the relative deviation between the experimental results and the existing clinical methods is less than 17%. The sensor has good stability and selectivity and can be used for the determination of CEA in human serum. The gold nanomaterials synthesized by further research have excellent chemiluminescence activity and can be used to label biomolecules and prepare biological probes. This article aims to explore the application of chemical methods in the transformation of new industries, to achieve breakthroughs in new products in industrial innovation, and to achieve the cross-fusion of management science and engineering disciplines and chemical disciplines. The industrial development of derivative functionalized gold nanomaterials has broad application prospects in biological analysis.
Collapse
|
8
|
Zhang Y, Zhao Y, Han Z, Zhang R, Du P, Wu Y, Lu X. Switching the Photoluminescence and Electrochemiluminescence of Liposoluble Porphyrin in Aqueous Phase by Molecular Regulation. Angew Chem Int Ed Engl 2020; 59:23261-23267. [PMID: 32888252 DOI: 10.1002/anie.202010216] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/25/2020] [Indexed: 01/10/2023]
Abstract
By a facile peripheral decoration of 5-(4-aminophenyl)-10,15,20-triphenylporphyrin (ATPP) with inherent aggregation-induced emission (AIE) active tetraphenylethene (TPE), a versatile AIEgenic porphyrin derivative (ATPP-TPE) was obtained, which greatly abolishes the detrimental π-π stacking and thus surmounts the notorious aggregation-caused quenching (ACQ) effect of ATPP in aqueous phase. The photoluminescence of ATPP-TPE is 4.5-fold stronger than ATPP at aggregation state. Moreover, an unequivocal aggregation induced electrochemiluminescence (AIECL) of ATPP-TPE was found to be seriously dependent on its aggregation property in aqueous solution with efficiency of 34 %, which is 6 times higher than pure ATPP. The versatility of this molecular structure modulation strategy along with the ACQ-to-AIE transformation in this work provides direction to guide for applying liposoluble porphyrins in aqueous phase by designs of synthetic porphyrin AIEgens.
Collapse
Affiliation(s)
- Yinpan Zhang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Yaqi Zhao
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Zhengang Han
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Ruizhong Zhang
- Tianjin Key Laboratory of Molecular Photoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin, 300072, China
| | - Peiyao Du
- Tianjin Key Laboratory of Molecular Photoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin, 300072, China
| | - Yanxia Wu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| |
Collapse
|
9
|
Wu Y, Han Z, Wei L, Sun H, Wang T, Chen J, Zhang R, Lu X. Depolymerization-Induced Electrochemiluminescence of Insoluble Porphyrin in Aqueous Phase. Anal Chem 2020; 92:5464-5472. [PMID: 32141290 DOI: 10.1021/acs.analchem.0c00208] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Exploring efficient and robust electrochemiluminescence (ECL) performance of liposoluble porphyrins in aqueous phase for analytical purposes especially for important biological targets is still very challenging. In this work, a novel depolymerization-induced electrochemiluminescence (DIECL) of porphyrin and β-cyclodextrin (β-CD) self-assembly through a coreactant route was discovered. Among the studied meso-tetrasubstituted porphyrins, self-assembly of 5,10,15,20-tetrakis(4-hydroxyphenyl) porphyrin (THPP) and β-CD (THPP@β-CD) exhibits the best DIECL behavior with high efficiency (21.8%) as well as good reproducibility and stability. A mechanistic study suggests that the facile complexation of porphyrins with amphiphilic β-CD via hydrogen bonding interaction greatly improves the water insolubility and the aggregation-caused deficient ECL of liposoluble porphyrins in aqueous solution. Furthermore, because of the strong hydrogen bonding between the hydroxyl groups on THPP@β-CD and a highly electronegative substrate, such THPP@β-CD is found to serve as an efficient luminophore for recognition of most electronegative fluoride (F-) in the aqueous phase with high sensitivity and selectivity, together with a low limit of detection (0.74 μΜ). The simplicity of this THPP@β-CD and its unique DIECL property in current work provides a new guide for the ECL applications of liposoluble porphyrins in aqueous phase.
Collapse
Affiliation(s)
- Yanxia Wu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Zhengang Han
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Liping Wei
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Heshui Sun
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Tieying Wang
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Jing Chen
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Ruizhong Zhang
- Tianjin Key Laboratory of Molecular Photoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China.,Tianjin Key Laboratory of Molecular Photoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
10
|
Han Q, Wang C, Li Z, Wu J, Liu PK, Mo F, Fu Y. Multifunctional Zinc Oxide Promotes Electrochemiluminescence of Porphyrin Aggregates for Ultrasensitive Detection of Copper Ion. Anal Chem 2020; 92:3324-3331. [DOI: 10.1021/acs.analchem.9b05262] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Qian Han
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
- Laboratory of Environment Change and Ecological Construction of Hebei Province, College of Resources and Environment Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Cun Wang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China
| | - Zhuozhe Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jingling Wu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ping kun Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Fangjing Mo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yingzi Fu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
11
|
Hu FX, Wang J, Chen S, Rao Q. Enhanced electrochemiluminescence from reduced graphene oxide-CdTe quantum dots for highly selective determination of copper ion. LUMINESCENCE 2019; 34:666-672. [PMID: 31243864 DOI: 10.1002/bio.3649] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/17/2019] [Accepted: 05/05/2019] [Indexed: 12/11/2022]
Abstract
An electrochemiluminescence (ECL) sensor based on reduced graphene oxide-CdTe quantum dots (RGO-CdTe QDs) composites for detecting copper ion (Cu2+ ) was proposed. The ECL behaviours of the RGO-CdTe QD modified electrode were investigated with H2 O2 as the co-reactant. Quantitative detection of Cu2+ was realized as Cu2+ could effectively quench the ECL signal of the RGO-CdTe QDs. A wide linear range of 1.00 × 10-14 to 1.00 × 10-4 M (R = 0.9953) was obtained under optimized conditions, and a detection limit (S/N = 3) was achieved of as low as 3.33 × 10-15 M. The proposed sensor also exhibited good stability and selectivity for the detection of copper ions. Finally, the analytical application of the proposed sensor was also evaluated using river water.
Collapse
Affiliation(s)
- Fang Xin Hu
- Institute of Materials Science & Devices, Suzhou University of Science and Technology, Suzhou, China
| | - Juanli Wang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
| | - Shihong Chen
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
| | - Qianghai Rao
- Institute of Materials Science & Devices, Suzhou University of Science and Technology, Suzhou, China
| |
Collapse
|
12
|
A smartphone-based ratiometric fluorescent device for field analysis of soluble copper in river water using carbon quantum dots as luminophore. Talanta 2019; 194:452-460. [DOI: 10.1016/j.talanta.2018.10.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/01/2018] [Accepted: 10/06/2018] [Indexed: 12/12/2022]
|
13
|
Du FK, Zhang H, Tan XC, Yan J, Liu M, Chen X, Wu YY, Feng DF, Chen QY, Cen JM, Liu SG, Qiu YQ, Han HY. Ru(bpy) 32+-Silica@Poly-L-lysine-Au as labels for electrochemiluminescence lysozyme aptasensor based on 3D graphene. Biosens Bioelectron 2018; 106:50-56. [PMID: 29414088 DOI: 10.1016/j.bios.2018.01.059] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/21/2018] [Accepted: 01/26/2018] [Indexed: 12/11/2022]
Abstract
In this work, the feasibility of a novel sensitive electrochemiluminescence aptasensor for the detection of lysozyme using Ru(bpy)32+-Silica@Poly-L-lysine-Au (RuSiNPs@PLL-Au) nanocomposites labeling as an indicator was demonstrated. The substrate electrode of the aptasensor was prepared by depositing gold nanoparticles (AuNPs) on 3D graphene-modified electrode. The lysozyme binding aptamer (LBA) was attached to the 3D graphene/AuNPs electrode through gold-thiol affinity, hybridized with a complementary single-strand DNA (CDNA) of the lysozyme aptamer labeled by RuSiNPs@PLL-Au as an electrochemiluminescence intensity amplifier. Thanks to the synergistic amplification of the 3D graphene, the AuNPs and RuSiNPs@PLL-Au NPs linked to Ru(bpy)32+-ECL further enhanced the ECL intensity of the aptasensor. In presence of lysozyme, the CDNA segment of the self-assembled duplex was displaced by the lysozyme, resulting in decreased electrochemiluminescence signal. Under the optimized conditions, the decrease in electrochemiluminescence intensity varied proportionally with the logarithmic concentration of the lysozyme from 2.25 × 10-12 to 5.0 × 10-8 mol L-1, and the detection limit was estimated to 7.5 × 10-13 mol L-1. The aptasensor was further tested in real samples and found reliable for the detection of lysozyme, thus holding great potential application in food safety researches and bioassay analysis.
Collapse
Affiliation(s)
- Fang-Kai Du
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for food safety and pharmaceutical analytical chemistry, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, PR China
| | - Hui Zhang
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for food safety and pharmaceutical analytical chemistry, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, PR China
| | - Xue-Cai Tan
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for food safety and pharmaceutical analytical chemistry, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, PR China.
| | - Jun Yan
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for food safety and pharmaceutical analytical chemistry, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, PR China
| | - Min Liu
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for food safety and pharmaceutical analytical chemistry, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, PR China
| | - Xiao Chen
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for food safety and pharmaceutical analytical chemistry, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, PR China
| | - Ye-Yu Wu
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for food safety and pharmaceutical analytical chemistry, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, PR China
| | - De-Fen Feng
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for food safety and pharmaceutical analytical chemistry, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, PR China
| | - Quan-You Chen
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for food safety and pharmaceutical analytical chemistry, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, PR China
| | - Jian-Mei Cen
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for food safety and pharmaceutical analytical chemistry, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, PR China
| | - Shao-Gang Liu
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for food safety and pharmaceutical analytical chemistry, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, PR China
| | - Yu-Qin Qiu
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for food safety and pharmaceutical analytical chemistry, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, PR China
| | - He-You Han
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for food safety and pharmaceutical analytical chemistry, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, PR China; State Key Laboratory of Agricultural Microbiology, College of Science, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
14
|
Luo JH, Cheng D, Li PX, Yao Y, Chen SH, Yuan R, Xu WJ. An electrochemiluminescent sensor based on functionalized conjugated polymer dots for the ultrasensitive detection of Cu2+. Chem Commun (Camb) 2018; 54:2777-2780. [DOI: 10.1039/c7cc09878b] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
An ultrasensitive electrochemiluminescence (ECL) detection for Cu2+ was explored using the carboxyl functionalized poly(9,9-dioctylfluorenyl-2,7-diyl) (PS-COOH-co-PFO) dots as the signal label without adding any coreactant.
Collapse
Affiliation(s)
- Jin-Hua Luo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering, Southwest University
- Chongqing 400715
- China
| | - Dan Cheng
- Chongqing No. 8 Secondary School
- Chongqing 401120
- P. R. China
| | - Pei-Xuan Li
- Chongqing No. 8 Secondary School
- Chongqing 401120
- P. R. China
| | - Yuan Yao
- Chongqing No. 8 Secondary School
- Chongqing 401120
- P. R. China
| | - Shi-Hong Chen
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering, Southwest University
- Chongqing 400715
- China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering, Southwest University
- Chongqing 400715
- China
| | - Wen-Ju Xu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering, Southwest University
- Chongqing 400715
- China
| |
Collapse
|
15
|
Wang Z, Qian Y, Wei X, Zhang Y, Wu G, Lu X. An “on-off” Electrochemiluminescence Biosensor Based on Molecularly Imprinted Polymer and Recycling Amplifications for Determination of Dopamine. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.08.076] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|