1
|
Prerna, Agarwal H, Goyal D. Photocatalytic degradation of textile dyes using phycosynthesised ZnO nanoparticles. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
2
|
He X, Zhang H, Shi H, Liu W, Sahle-Demessie E. Fates of Au, Ag, ZnO, and CeO 2 Nanoparticles in Simulated Gastric Fluid Studied using Single-Particle-Inductively Coupled Plasma-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2180-2190. [PMID: 32881526 PMCID: PMC7877237 DOI: 10.1021/jasms.0c00278] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The increasing use of engineered nanoparticles (ENPs) in many industries has generated significant research interest regarding their impact on the environment and human health. The major routes of ENPs to enter the human body are inhalation, skin contact, and ingestion. Following ingestion, ENPs have a long contact time in the human stomach. Hence, it is essential to know the fate of the ENPs under gastric conditions. This study aims to investigate the fate of the widely used nanoparticles Ag-NP, Au-NP, CeO2-NP, and ZnO-NP in simulated gastric fluid (SGF) under different conditions through the application of single-particle inductively coupled plasma-mass spectrometry (SP-ICP-MS). The resulting analytical methods have size detection limits for Ag-NP, Au-NP, ZnO-NP, and CeO2-NP from 15 to 35 nm, and the particle concentration detection limit is 135 particles/mL. Metal ions corresponding to the ENPs of interest were detected simultaneously with detection limits from 0.02 to 0.1 μg/L. The results showed that ZnO-NPs dissolved completely and rapidly in SGF, whereas Au-NPs and CeO2-NPs showed apparent aggregation and did not dissolve significantly. Both aggregation and dissolution were observed in Ag-NP samples following exposure to SGF. The size distributions and concentrations of ENPs were affected by the original ENP concentration, ENP size, the contact time in SGF, and temperature. This work represents a significant advancement in the understanding of ENP characteristics under gastric conditions.
Collapse
Affiliation(s)
- Xiaolong He
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
- Center for Single Particle, Single Cell and Single Molecule Monitoring (CS3M), Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Haiting Zhang
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
- Center for Single Particle, Single Cell and Single Molecule Monitoring (CS3M), Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Honglan Shi
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
- Center for Single Particle, Single Cell and Single Molecule Monitoring (CS3M), Missouri University of Science and Technology, Rolla, Missouri 65409, United States
- Center for Research in Energy and Environment, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Wenyan Liu
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
- Center for Research in Energy and Environment, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Endalkachew Sahle-Demessie
- The U.S. Environmental Protection Agency, ORD, CESER, LRTD, 26 West Martin Luther King Jr. Drive, Cincinnati, Ohio 45268, United States
| |
Collapse
|
3
|
Karkhane M, Lashgarian HE, Mirzaei SZ, Ghaffarizadeh A, cherghipour K, Sepahvand A, Marzban A. Antifungal, antioxidant and photocatalytic activities of zinc nanoparticles synthesized by Sargassum vulgare extract. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
4
|
Porter MD, Granger JH. Surface-enhanced Raman scattering II: concluding remarks. Faraday Discuss 2019; 205:601-613. [PMID: 29177326 DOI: 10.1039/c7fd00206h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Surface-enhanced Raman scattering (SERS) enables the detection of a large number of different adsorbates at extraordinarily low levels. This plasmonics-based technology has undergone a number of remarkable advances since its discovery over 40 years ago, and has emerged from being an investigative tool confined largely to the research laboratory into a much more usable tool across a broad range of investigative studies, both within the laboratory and beyond. The purpose of this Concluding remarks manuscript is to capture, at least in part, the developments in this area since the first Faraday discussion of SERS over a decade ago. It begins with a brief contextual overview and then moves into describing a few of the many highlights from the meeting. Along the way, we have added a few comments and perspectives as a means to more fully stage where the different areas of research with SERS stand today. An addendum is included that collects a few of the recent perspectives on the original work and activities in this area.
Collapse
Affiliation(s)
- Marc D Porter
- Departments of Chemistry, University of Utah, Salt Lake City, UT 84112, USA.
| | | |
Collapse
|
5
|
Metcalfe CD, Sultana T, Martin J, Newman K, Helm P, Kleywegt S, Shen L, Yargeau V. Silver near municipal wastewater discharges into western Lake Ontario, Canada. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:555. [PMID: 30151718 DOI: 10.1007/s10661-018-6922-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
Because of the widespread use of silver nanoparticles in commercial products, discharges of municipal wastewater may be a point source of silver in the aquatic environment. We monitored two sites in western Lake Ontario impacted by discharges from wastewater treatment plants serving the City of Toronto. Concentrations of silver were elevated in bottom sediments and suspended sediments collected at the two sites. We also deployed two types of passive samplers in the water column at the two sites, the newly developed Carbon Nanotube Integrative Samplers for monitoring "CNIS-labile" silver and Diffusive Gradient in Thin Film samplers for monitoring "DGT-labile" silver. Results from these passive samplers indicated that the concentrations of silver at the two sites were either below detection limits or were in the ng/L range. In laboratory experiments where the sediments were re-suspended in Milli-Q water, a small proportion of the silver (i.e., < 25%) was labile and partitioned as colloidal or dissolved silver into the liquid phase after agitation. Nanoparticles tentatively identified as silver nanoparticles were detected by single-particle ICP-MS in suspension after agitation of both suspended and bottom sediments. Therefore, there is a need to assess whether silver species, including silver nanoparticles are transported from wastewater treatment plants into sediments in the aquatic environment. This study is unique in focusing on the in situ distribution of silver in natural waters and in sediments that are potentially impacted by urban sources of nanoparticles.
Collapse
Affiliation(s)
- Chris D Metcalfe
- Water Quality Centre, Trent University, Peterborough, ON, Canada.
| | - Tamanna Sultana
- Water Quality Centre, Trent University, Peterborough, ON, Canada
| | - Jonathan Martin
- Water Quality Centre, Trent University, Peterborough, ON, Canada
| | - Karla Newman
- Water Quality Centre, Trent University, Peterborough, ON, Canada
| | - Paul Helm
- Ontario Ministry of Environment and Climate Change, Toronto, ON, Canada
| | - Sonya Kleywegt
- Ontario Ministry of Environment and Climate Change, Toronto, ON, Canada
| | - Li Shen
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada
| | - Viviane Yargeau
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada
| |
Collapse
|
6
|
Kidd JM, Hanigan D, Truong L, Hristovski K, Tanguay R, Westerhoff P. Developing and interpreting aqueous functional assays for comparative property-activity relationships of different nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:1609-1616. [PMID: 30045577 DOI: 10.1016/j.scitotenv.2018.02.107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 06/08/2023]
Abstract
It is difficult to relate intrinsic nanomaterial properties to their functional behavior in the environment. Unlike frameworks for dissolved organic chemicals, there are few frameworks comparing multiple and inter-related properties of engineered nanomaterials (ENMs) to their fate, exposure, and hazard in environmental systems. We developed and evaluated reproducibility and inter-correlation of 12 physical, chemical, and biological functional assays in water for eight different engineered nanomaterials (ENMs) and interpreted results using activity-profiling radar plots. The functional assays were highly reproducible when run in triplicate (average coefficient of variation [CV]=6.6%). Radar plots showed that each nanomaterial exhibited unique activity profiles. Reactivity assays showed dissolution or aggregation potential for some ENMs. Surprisingly, multi-walled carbon nanotubes (MWCNTs) exhibited movement in a magnetic field. We found high inter-correlations between cloud point extraction (CPE) and distribution to sewage sludge (R2=0.99), dissolution at pH8 and pH4.9 (R2=0.98), and dissolution at pH8 and zebrafish mortality at 24hpf (R2=0.94). Additionally, most ENMs tend to distribute out of water and into other phases (i.e., soil surfaces, surfactant micelles, and sewage sludge). The activity-profiling radar plots provide a framework and estimations of likely ENM disposition in the environment.
Collapse
Affiliation(s)
- Justin M Kidd
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, School of Sustainable Engineering and the Built Environment, Tempe, AZ 85287-3005, United States
| | - David Hanigan
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Nevada 89557-0258, United States
| | - Lisa Truong
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center, Marine and Freshwater Biomedical Sciences Center, Oregon State University, Corvallis, OR 97331-7301, United States
| | - Kiril Hristovski
- The Polytechnic School, Fulton Schools of Engineering, Arizona State University, Mesa, AZ 85212, United States
| | - Robert Tanguay
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center, Marine and Freshwater Biomedical Sciences Center, Oregon State University, Corvallis, OR 97331-7301, United States
| | - Paul Westerhoff
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, School of Sustainable Engineering and the Built Environment, Tempe, AZ 85287-3005, United States.
| |
Collapse
|
7
|
Venkatesan AK, Reed RB, Lee S, Bi X, Hanigan D, Yang Y, Ranville JF, Herckes P, Westerhoff P. Detection and Sizing of Ti-Containing Particles in Recreational Waters Using Single Particle ICP-MS. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 100:120-126. [PMID: 29164274 DOI: 10.1007/s00128-017-2216-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/15/2017] [Indexed: 06/07/2023]
Abstract
Single particle inductively coupled plasma mass spectrometry (spICP-MS) was used to detect Ti-containing particles in heavily-used bathing areas of a river (Salt River) and five swimming pools. Ti-containing particle concentrations in swimming pools ranged from 2.8 × 103 to 4.4 × 103 particles/mL and were an order of magnitude lower than those detected in the Salt River. Measurements from the Salt River showed an 80% increase in Ti-containing particle concentration over baseline concentration during peak recreational activity (at 16:00 h) in the river. Cloud point extraction followed by transmission electron microscopy with energy dispersive X-ray analysis confirmed presence of aggregated TiO2 particles in river samples, showing morphological similarity to particles present in an over-the-counter sunscreen product. The maximum particle mass concentration detected in a sample from the Salt River (659 ng/L) is only slightly lower than the predicted no effect concentration for TiO2 to aquatic organisms (< 1 μg/L).
Collapse
Affiliation(s)
- Arjun K Venkatesan
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287-3005, USA.
- Center for Clean Water Technology, Department of Civil Engineering, Stony Brook University, Stony Brook, NY, 11794, USA.
| | - Robert B Reed
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287-3005, USA
- Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, CO, 80401, USA
| | - Sungyun Lee
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287-3005, USA
- Environmental System Research Division, Korea Institute of Machinery and Materials, Daejeon, 34103, Republic of Korea
| | - Xiangyu Bi
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287-3005, USA
| | - David Hanigan
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287-3005, USA
- Department of Civil and Environmental Engineering, University of Nevada, Reno, NV, 89557-0258, USA
| | - Yu Yang
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287-3005, USA
| | - James F Ranville
- Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, CO, 80401, USA
| | - Pierre Herckes
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287-3005, USA
| |
Collapse
|
8
|
Weigel S, Peters R, Loeschner K, Grombe R, Linsinger TPJ. Results of an interlaboratory method performance study for the size determination and quantification of silver nanoparticles in chicken meat by single-particle inductively coupled plasma mass spectrometry (sp-ICP-MS). Anal Bioanal Chem 2017. [PMID: 28634763 PMCID: PMC5519662 DOI: 10.1007/s00216-017-0427-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Single-particle inductively coupled plasma mass spectrometry (sp-ICP-MS) promises fast and selective determination of nanoparticle size and number concentrations. While several studies on practical applications have been published, data on formal, especially interlaboratory validation of sp-ICP-MS, is sparse. An international interlaboratory study was organized to determine repeatability and reproducibility of the determination of the median particle size and particle number concentration of Ag nanoparticles (AgNPs) in chicken meat. Ten laboratories from the European Union, the USA, and Canada determined particle size and particle number concentration of two chicken meat homogenates spiked with polyvinylpyrrolidone (PVP)-stabilized AgNPs. For the determination of the median particle diameter, repeatability standard deviations of 2 and 5% were determined, and reproducibility standard deviations were 15 and 25%, respectively. The equivalent median diameter itself was approximately 60% larger than the diameter of the particles in the spiking solution. Determination of the particle number concentration was significantly less precise, with repeatability standard deviations of 7 and 18% and reproducibility standard deviations of 70 and 90%.
Collapse
Affiliation(s)
- Stefan Weigel
- RIKILT - Wageningen UR, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
- Federal Institute for Risk Assessment (BfR - Bundesinstitut für Risikobewertung), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Ruud Peters
- RIKILT - Wageningen UR, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - Katrin Loeschner
- National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, 2860, Søbor, Denmark
| | - Ringo Grombe
- European Commission, Joint Research Centre, Directorate F - Health, Consumers and Reference Materials, Retieseweg 111, 2440, Geel, Belgium
| | - Thomas P J Linsinger
- European Commission, Joint Research Centre, Directorate F - Health, Consumers and Reference Materials, Retieseweg 111, 2440, Geel, Belgium.
| |
Collapse
|
9
|
Zhang C, Hu Z, Li P, Gajaraj S. Governing factors affecting the impacts of silver nanoparticles on wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 572:852-873. [PMID: 27542630 DOI: 10.1016/j.scitotenv.2016.07.145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/20/2016] [Accepted: 07/20/2016] [Indexed: 05/22/2023]
Abstract
Silver nanoparticles (nanosilver or AgNPs) enter municipal wastewater from various sources, raising concerns about their potential adverse effects on wastewater treatment processes. We argue that the biological effects of silver nanoparticles at environmentally realistic concentrations (μgL-1 or lower) on the performance of a full-scale municipal water resource recovery facility (WRRF) are minimal. Reactor configuration is a critical factor that reduces or even mutes the toxicity of silver nanoparticles towards wastewater microbes in a full-scale WRRF. Municipal sewage collection networks transform silver nanoparticles into silver(I)-complexes/precipitates with low ecotoxicity, and preliminary/primary treatment processes in front of biological treatment utilities partially remove silver nanoparticles to sludge. Microbial functional redundancy and microbial adaptability to silver nanoparticles also greatly alleviate the adverse effects of silver nanoparticles on the performance of a full-scale WRRF. Silver nanoparticles in a lab-scale bioreactor without a sewage collection system and/or a preliminary/primary treatment process, in contrast to being in a full scale system, may deteriorate the reactor performance at relatively high concentrations (e.g., mgL-1 levels or higher). However, in many cases, silver nanoparticles have minimal impacts on lab-scale bioreactors, such as sequencing batch bioreactors (SBRs), especially when at relatively low concentrations (e.g., less than 1mgL-1). The susceptibility of wastewater microbes to silver nanoparticles is species-specific. In general, silver nanoparticles have higher toxicity towards nitrifying bacteria than heterotrophic bacteria.
Collapse
Affiliation(s)
- Chiqian Zhang
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, USA.
| | - Zhiqiang Hu
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Ping Li
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Shashikanth Gajaraj
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|