3
|
Pena-Pereira F, Bendicho C, Pavlović DM, Martín-Esteban A, Díaz-Álvarez M, Pan Y, Cooper J, Yang Z, Safarik I, Pospiskova K, Segundo MA, Psillakis E. Miniaturized analytical methods for determination of environmental contaminants of emerging concern - A review. Anal Chim Acta 2020; 1158:238108. [PMID: 33863416 DOI: 10.1016/j.aca.2020.11.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 01/09/2023]
Abstract
The determination of contaminants of emerging concern (CECs) in environmental samples has become a challenging and critical issue. The present work focuses on miniaturized analytical strategies reported in the literature for the determination of CECs. The first part of the review provides brief overview of CECs whose monitoring in environmental samples is of particular significance, namely personal care products, pharmaceuticals, endocrine disruptors, UV-filters, newly registered pesticides, illicit drugs, disinfection by-products, surfactants, high technology rare earth elements, and engineered nanomaterials. Besides, an overview of downsized sample preparation approaches reported in the literature for the determination of CECs in environmental samples is provided. Particularly, analytical methodologies involving microextraction approaches used for the enrichment of CECs are discussed. Both solid phase- and liquid phase-based microextraction techniques are highlighted devoting special attention to recently reported approaches. Special emphasis is placed on newly developed materials used for extraction purposes in microextraction techniques. In addition, recent contributions involving miniaturized analytical flow techniques for the determination of CECs are discussed. Besides, the strengths, weaknesses, opportunities and threats of point of need and portable devices have been identified and critically compared with chromatographic methods coupled to mass chromatography. Finally, challenging aspects regarding miniaturized analytical methods for determination of CECs are critically discussed.
Collapse
Affiliation(s)
- Francisco Pena-Pereira
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Química Analítica e Alimentaria, Grupo QA2, Edificio CC Experimentais, Campus de Vigo, As Lagoas, Marcosende, 36310, Vigo, Spain.
| | - Carlos Bendicho
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Química Analítica e Alimentaria, Grupo QA2, Edificio CC Experimentais, Campus de Vigo, As Lagoas, Marcosende, 36310, Vigo, Spain.
| | - Dragana Mutavdžić Pavlović
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, Zagreb, 10000, Croatia
| | - Antonio Martín-Esteban
- Departamento de Medio Ambiente y Agronomía, INIA, Carretera de A Coruña Km 7.5, Madrid, E-28040, Spain
| | - Myriam Díaz-Álvarez
- Departamento de Medio Ambiente y Agronomía, INIA, Carretera de A Coruña Km 7.5, Madrid, E-28040, Spain
| | - Yuwei Pan
- Cranfield Water Science Institute, Cranfield University, Cranfield, MK43 0AL, United Kingdom; School of Engineering, University of Glasgow, G12 8LT, United Kingdom
| | - Jon Cooper
- School of Engineering, University of Glasgow, G12 8LT, United Kingdom
| | - Zhugen Yang
- Cranfield Water Science Institute, Cranfield University, Cranfield, MK43 0AL, United Kingdom
| | - Ivo Safarik
- Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05, Ceske Budejovice, Czech Republic; Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic; Department of Magnetism, Institute of Experimental Physics, SAS, Watsonova 47, 040 01, Kosice, Slovakia
| | - Kristyna Pospiskova
- Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05, Ceske Budejovice, Czech Republic; Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic
| | - Marcela A Segundo
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Elefteria Psillakis
- Laboratory of Aquatic Chemistry, School of Environmental Engineering, Polytechnioupolis, Technical University of Crete, GR-73100, Chania, Crete, Greece
| |
Collapse
|
5
|
Development of magnetic porous carbon nano-fibers for application as adsorbents in the enrichment of trace Sudan dyes in foodstuffs. J Chromatogr A 2020; 1625:461305. [PMID: 32709348 DOI: 10.1016/j.chroma.2020.461305] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/11/2020] [Accepted: 06/02/2020] [Indexed: 12/22/2022]
Abstract
A novel kind of magnetic porous carbon nano-fibers (Fe3O4@P-CNFs) materials was successfully prepared and used as an adsorbent. Based on the above-mentioned adsorbent, a simple and effective magnetic disperse solid-phase extraction (MSPE) method was developed and first utilized to the enrichment and purification of five Sudan dyes (including Sudan I, Sudan II, Sudan III, Sudan IV, and Sudan Red 7B) in foodstuffs for the first time. High-performance liquid chromatography was used to determine the content of the Sudan dyes. The parameters affecting the extraction performance were studied and optimized, including the amount of the adsorbent and inorganic salt, type and the volume of the eluent, pH of the sample solution and extraction time. Under the optimized experimental conditions, the results show that the proposed method has a good linear relationship (r≥ 0.9993). The limits of detection range from 0.88 μg L-1 to 1.27 μg L-1. The recoveries range from 86.6% to 99.7% with the relative standard deviations ranging from 0.6% to 7.9% in the methodology validation. The above-mentioned results indicate that the proposed method is a sensitive and reliable procedure with good reproducibility for the detection of Sudan dyes residues in foodstuffs.
Collapse
|
7
|
Applications of Hollow-Fiber and Related Microextraction Techniques for the Determination of Pesticides in Environmental and Food Samples—A Mini Review. SEPARATIONS 2019. [DOI: 10.3390/separations6040057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Pesticides represent one of the most important groups of analytes in environmental analysis. Moreover, their levels are very frequently determined in food and beverages due to the concern over their possible adverse health effects. Their concentration in samples is usually very low; thus, they have to be preconcentrated. Conventional solvent and solid-phase extractions are mainly used for this purpose, but miniaturized approaches are also being applied more and more often. The present review covers solvent microextractions that use a semi-permeable membrane barrier between the sample and the solvent. The main representatives of this approach are hollow-fiber microextraction (HFME), solvent bar microextraction (SBME), electromembrane extraction (EME), and different variations of those, such as combinations with other sorbent or solvent microextractions, electromigration, etc. The relevant research from the last decade, dealing with the application of these microextractions to the isolation of pesticides from various environmental and food samples, is critically discussed with emphasis on their strengths and weak points.
Collapse
|
9
|
Garcia-Alonso S, Perez-Pastor RM. Organic Analysis of Environmental Samples Using Liquid Chromatography with Diode Array and Fluorescence Detectors: An Overview. Crit Rev Anal Chem 2019; 50:29-49. [PMID: 30925844 DOI: 10.1080/10408347.2019.1570461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This overview is focused to provide an useful guide of the families of organic pollutants that can be determined by liquid chromatography operating in reverse phase and ultraviolet/fluorescence detection. Eight families have been classified as the main groups to be considered: carbonyls, carboxyls, aromatics, phenols, phthalates, isocyanates, pesticides and emerging. The references have been selected based on analytical methods used in the environmental field, including both the well-established procedures and those more recently developed.
Collapse
|