1
|
Wang Y, Deng Y, Xia H, Zhang R, Liu J, Zhang H, Sun Y, Zhang Z, Lu X. Superhydrophilic Triazine-Based Covalent Organic Frameworks via Post-Modification of FeOOH Clusters for Boosted Photocatalytic Performance. SMALL METHODS 2024; 8:e2300163. [PMID: 37316981 DOI: 10.1002/smtd.202300163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/01/2023] [Indexed: 06/16/2023]
Abstract
The triazine-based covalent organic frameworks (tCOF), an intriguing subtype of COFs, are expected as highly promising photocatalysts for various photocatalytic applications owing to their fully conjugated structures and nitrogen-rich skeletons. However, the inherent hydrophobicity and fast recombination of photoexcited electron-hole pairs are two main factors hindering the application of tCOF in practical photocatalytic reactions. Here, a post-synthetic modification strategy to fabricate superhydrophilic tCOF-based photocatalysts is demonstrated by in situ growing FeOOH clusters on TaTz COF (TaTz-FeOOH) for efficient photocatalytic oxidation of various organic pollutants. The strong polar FeOOH endows TaTz-FeOOH with good hydrophilic properties. The well-defined heterogeneous interface between FeOOH and TaTz allows the photoelectrons generated by TaTz to be consumed by Fe (III) to transform into Fe (II), synergistically promoting the separation of holes and the generation of free radicals. Compared with the unmodified TaTz, the optimized TaTz-FeOOH (1%) shows excellent photocatalytic performance, where the photocatalytic degrade rate (k) of rhodamine B is increased by about 12 times, and the degradation rate is maintained at 99% after 5 cycles, thus achieving efficient removal of quinolone antibiotics from water. This study provides a new avenue for the development of COF-based hydrophilic functional materials for a wide range of practical applications.
Collapse
Affiliation(s)
- Yue Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Yang Deng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Hong Xia
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Ruizhong Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Jia Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yajing Sun
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhen Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| |
Collapse
|
2
|
Shahhoseini F, Azizi A, S.Bottaro C. A critical evaluation of molecularly imprinted polymer (MIP) coatings in solid phase microextraction devices. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
3
|
Shirani M, Parandi E, Nodeh HR, Akbari-Adergani B, Shahdadi F. Development of a rapid efficient solid-phase microextraction: An overhead rotating flat surface sorbent based 3-D graphene oxide/ lanthanum nanoparticles @ Ni foam for separation and determination of sulfonamides in animal-based food products. Food Chem 2022; 373:131421. [PMID: 34742047 DOI: 10.1016/j.foodchem.2021.131421] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 01/10/2023]
Abstract
In this study, an overhead rotating flat surface sorbent based solid-phase microextraction was developed as a rapid and efficient method for simultaneous separation and determination of sulfonamides in animal based-food products. 3D graphene oxide/ lanthanum nanoparticles @ Ni foam was introduced as a novel selective sorbent. SEM-EDX and FT-IR techniques were applied for characterization of the sorbent. At optimum conditions, the linear ranges of 0.4-700.0 (µg L-1), 0.3-900.0 (µg L-1), and 0.25-500 (µg L-1) and the enrichment factors of 606.8, 604.3, 608.9 were obtained for SDZ, SMX, and SMZ, respectively. The LOD (S/N = 3) of 0.14, 0.11, 0.08 (µg L-1) were achieved for SDZ, SMX, and SMZ, respectively. The intra-day and inter-day precision (%) (five days, n = 7) for the concentration of 100 µg L-1 were less than 4.3 and 3.8, respectively. The recoveries over 90.0 % revealed high capability of the method for utilization in complex matrixes.
Collapse
Affiliation(s)
- Mahboube Shirani
- Department of Chemistry, Faculty of Science, University of Jiroft, Jiroft, P. O. Box 7867161167, Iran
| | - Ehsan Parandi
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran
| | - Hamid Rashidi Nodeh
- Food Technology and Agricultural Products Research Centre, Standard Research Institute (SRI), Karaj 31745-139, Iran
| | - Behrouz Akbari-Adergani
- Food and Drug Laboratory Research Center, Food and Drug Administration, Ministry of Health and Medical Education Tehran Islamic Republic of Iran
| | - Fatemeh Shahdadi
- Food Science and Technology Department, Faculty of Agriculture, University of Jiroft, P. O. Box 7867161167, Jiroft, Iran
| |
Collapse
|
4
|
Qiu L, Wu J, Qian Y, Nafees M, Zhang J, Du W, Yin Y, Guo H. Impact of biochar-induced vertical mobilization of dissolved organic matter, sulfamethazine and antibiotic resistance genes variation in a soil-plant system. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126022. [PMID: 34229407 DOI: 10.1016/j.jhazmat.2021.126022] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/13/2021] [Accepted: 04/23/2021] [Indexed: 06/13/2023]
Abstract
The migration risk of antibiotic and antibiotic resistance genes (ARGs) have attracted lots of attentions due to their potential threaten to public health. Strategies to reduce their vertical mobilization risk are urgently required for groundwater safety and human health. Biochar enjoys numerous interests due to its excellent sorption affinity. However, little was known about the efficacy of biochar amendment in impeding the vertical mobilization of antibiotic and ARGs. To fill this gap, a column study was carried out to investigate biochar-induced variations in the leaching behavior of dissolved organic matter (DOM), sulfamethazine (SMZ) and ARGs. Results showed that biochar addition enhanced DOM export from soil, changed its composition and impeded the vertical transport of SMZ. Biochar amendment could effectively decrease the occurrence of extracellular and intracellular sul2 in soil and impede its vertical transportation, however, it did not work out with sul1 gene. Structural equation modeling analysis demonstrated that the abundance of sul2 was significantly controlled by SMZ concentration, while the primary drivers of sul1 were SMZ concentration and DOM content. These results indicated the failure in inhibiting the vertical transfer of sul1 under biochar amendment and highlighted the important role of DOM in the leaching of soil ARGs.
Collapse
Affiliation(s)
- Linlin Qiu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jingjing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yuan Qian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Muhammad Nafees
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jingxian Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
5
|
Reduced graphene oxide coated nickel foam for stir bar sorptive extraction of benzotriazole ultraviolet absorbents from environmental water. Talanta 2021; 231:122332. [PMID: 33965013 DOI: 10.1016/j.talanta.2021.122332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 01/01/2023]
Abstract
The use of porous carrier and coating sorbents in stir bar sorptive extraction (SBSE) contributes to the improvement of extraction efficiency and dynamics. Herein, porous nickel foam (NF) with large surface area and magnetic property was used as the carrier of stir bar. NF was added into the mixture of graphene oxide (GO) and reducing agent, and reduced graphene oxide (RGO) coating was obtained on the surface of NF substrate by in situ hydrothermal reduction. The characterization results of Fourier transform infrared spectroscopy, X-ray power-diffraction and scanning electron microscope showed that GO was partially reduced into RGO, and the RGO coating was uniformly loaded on the NF surface. The obtained RGO-NF composite was used as the stir bar coating for the analysis of six benzotriazole (BZTs) UV absorbents. The extraction efficiency was between 48 and 64% for six BZTs. RGO-NF stir bar exhibited faster adsorption/desorption kinetics than commercial polydimethylsiloxane coated stir bar (50 min vs 120/360 min) due to its porous structure and large specific surface area. On this basis, a method of RGO-NF coated stir bar sorptive extraction combined with high performance liquid chromatography (HPLC)-DAD was established for the determination of six BZTs. Under the optimized conditions, the limits of detection were 0.33-0.50 μg/L for six target BZTs, and the linear range was 1-100 μg/L. The proposed method merits good ability to resist matrix and was used to analyze six BZTs in environmental water samples. The recoveries of target BZTs were obtained within 83.0-112% in the spiked East Lake water and 97.0-111% in the spiked Yangtze River water, respectively.
Collapse
|
6
|
Sun Z, Liu H, Zhou Y, Zhao S, Li J, Wang X, Gong B. A restricted access molecularly imprinted polymer coating on metal–organic frameworks for solid-phase extraction of ofloxacin and enrofloxacin from bovine serum. RSC Adv 2019; 9:27953-27960. [PMID: 35530467 PMCID: PMC9070776 DOI: 10.1039/c9ra04143e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 09/02/2019] [Indexed: 12/12/2022] Open
Abstract
A restricted access molecularly imprinted polymer (RAMIP) crosslinked with bovine serum albumin (BSA) was prepared on the surface of the mesoporous UiO-66-NH2 metal–organic framework (MOF). The surface morphology, imprinting behavior, and protein exclusion properties of UiO-66-NH2@RAMIP@BSA were investigated. The maximum adsorption capacity was 50.55 mg g−1 for ofloxacin, with a 99.4% protein exclusion rate. Adsorption equilibrium was reached in 9 min. Combined with RP-HPLC, a solid-phase extraction column filled with UiO-66-NH2@RAMIP@BSA was used to selectively enrich and analyze ofloxacin and enrofloxacin antibiotics from bovine serum with recoveries of 93.7–104.2% with relative standard deviations of 2.0–4.5% (n = 3). The linear range and the limit of detection were 0.1–100 μg mL−1 and 15.6 ng mL−1, respectively. These results suggest that UiO-66-NH2@RAMIP@BSA is an efficient pretreatment adsorbent for biological sample analysis. A restricted access molecularly imprinted polymer (RAMIP) crosslinked with bovine serum albumin (BSA) was prepared on the surface of the mesoporous UiO-66-NH2 metal–organic framework (MOF).![]()
Collapse
Affiliation(s)
- Zhian Sun
- School of Chemistry and Chemical Engineering
- North Minzu University
- Yinchuan 750021
- P. R. China
| | - Huachun Liu
- School of Chemistry and Chemical Engineering
- North Minzu University
- Yinchuan 750021
- P. R. China
| | - Yanqiang Zhou
- School of Chemistry and Chemical Engineering
- North Minzu University
- Yinchuan 750021
- P. R. China
| | - Shanwen Zhao
- School of Chemistry and Chemical Engineering
- North Minzu University
- Yinchuan 750021
- P. R. China
| | - Jianmin Li
- School of Chemistry and Chemical Engineering
- North Minzu University
- Yinchuan 750021
- P. R. China
| | - Xiaoxiao Wang
- School of Chemistry and Chemical Engineering
- North Minzu University
- Yinchuan 750021
- P. R. China
| | - Bolin Gong
- School of Chemistry and Chemical Engineering
- North Minzu University
- Yinchuan 750021
- P. R. China
| |
Collapse
|
7
|
Preparation and characterization of hydrophilic molecularly imprinted microspheres for difenoconazole. CHEMICAL PAPERS 2017. [DOI: 10.1007/s11696-017-0364-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Reyes-Garcés N, Gionfriddo E, Gómez-Ríos GA, Alam MN, Boyacı E, Bojko B, Singh V, Grandy J, Pawliszyn J. Advances in Solid Phase Microextraction and Perspective on Future Directions. Anal Chem 2017; 90:302-360. [DOI: 10.1021/acs.analchem.7b04502] [Citation(s) in RCA: 402] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | | | - Md. Nazmul Alam
- Department of Chemistry, University of Waterloo, Ontario, Canada N2L 3G1
| | - Ezel Boyacı
- Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey
| | - Barbara Bojko
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland
| | - Varoon Singh
- Department of Chemistry, University of Waterloo, Ontario, Canada N2L 3G1
| | - Jonathan Grandy
- Department of Chemistry, University of Waterloo, Ontario, Canada N2L 3G1
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|