1
|
Xu L, Lu S, Wang H, Xu H, Ye BC. Dual-Recognition Triggered Proximity Ligation Combined with a Rolling Circle Amplification Strategy for Analysis of Exosomal Protein-Specific Glycosylation. Anal Chem 2023; 95:15745-15754. [PMID: 37842978 DOI: 10.1021/acs.analchem.3c03239] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Exosomal surface glycan reveals the biological function and molecular information on the protein, especially in indicating the pathogenesis of certain diseases through monitoring of specific protein glycosylation accurately. However, in situ and nondestructive measurement techniques for certain Exosomal glycoproteins are still lacking. In this work, combined with on-chip purification, we designed a proximity ligation assay-induced rolling circle amplification (RCA) strategy for highly sensitive identification of Exosomal protein-specific glycosylation based on a couple of proximity probes to target Exosomal protein and the protein-specific glycosylation site. Benefiting from efficient separation, scalable dual-recognition, and proximity-triggered RCA amplification, the proposed strategy could convert different protein-specific glycan levels to prominent changes in absorbance signals, resulting in accurate quantification of specific glycosylated Exosomal protein. When detecting the glycosylated PD-L1 on MDA-MB-231 exosomes and glycosylated PTK7 on HepG2 exosomes, the detection limits were calculated to be as low as 1.04 × 104 and 2.759 × 103 particles/mL, respectively. In addition, we further expand the dual-recognition site to investigate the potential correlation of Exosomal glycosylation with polarization of THP-1 cells toward the tumor-suppressive M1 phenotype. Overall, this strategy provides a universal tool for multiple analyses of diverse protein-specific glycosylated exosomes, exhibiting enormous potential to explore exosome function and search for new early diagnosis markers.
Collapse
Affiliation(s)
- Lijun Xu
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Siyu Lu
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hua Wang
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Huiying Xu
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bang-Ce Ye
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
2
|
Zhu B, Wang L, Lu Y, Chen C, Wang K, Zhang L. Recombinase Polymerase Amplification Assay with Lateral Flow Strips for Rapid Detection of Candidiasis Due to Candida parapsilosis. Curr Microbiol 2023; 80:217. [PMID: 37202545 DOI: 10.1007/s00284-023-03318-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/29/2023] [Indexed: 05/20/2023]
Abstract
Candida parapsilosis is a common cause of candidiasis among hospitalized patients, often surpassing Candida albicans. Due to the recent increase in C. parapsilosis infections, there is an urgent need for rapid, sensitive, and real-time on-site detection of nucleic acids for timely diagnosis of candidiasis. We developed an assay for detection of C. parapsilosis by combining recombinase polymerase amplification (RPA) with a lateral flow strip (LFS). The RPA-LFS assay was used to amplify the beta-1,3-glucan synthase catalytic subunit 2 (FKS2) gene of C. parapsilosis with a primer-probe set optimized by introducing base mismatches (four bases modified by the probe and one by the reverse primer) to achieve specific and sensitive detection of clinical samples. The RPA assays can rapidly amplify and visualize a target gene within 30 min, while the entire process can be completed within 40 min by pre-processing the sample. The product of RPA has two chemical labels, FITC and Biotin, of the amplification product can be carefully on the strip. The sensitivity and specificity of the RPA-LFS assay were determined by analysis of 35 common clinical pathogens and 281 clinical samples against quantitative PCR. The results confirmed that the proposed RPA-LFS assay is a reliable molecular diagnostic method for the detection of C. parapsilosis to meet the urgent need for rapid, specific, sensitive, and portable field testing.
Collapse
Affiliation(s)
- Bo Zhu
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lei Wang
- Central Laboratory of Hospital, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital, Lianyungang, China
| | - Yingzhi Lu
- Department of Oncology & Department of Laboratory Medicine, The Second People's Hospital of Lianyungang (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Cheng Chen
- Department of Oncology & Department of Laboratory Medicine, The Second People's Hospital of Lianyungang (Cancer Hospital of Lianyungang), Lianyungang, China.
| | - Kun Wang
- Department of Oncology & Department of Laboratory Medicine, The Second People's Hospital of Lianyungang (Cancer Hospital of Lianyungang), Lianyungang, China.
| | - Lei Zhang
- Central Laboratory of Hospital, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital, Lianyungang, China.
| |
Collapse
|
3
|
Zhao M, Wang X, Wang K, Li Y, Wang Y, Zhou P, Wang L, Zhu W. Recombinant polymerase amplification combined with lateral flow strips for the detection of deep-seated Candida krusei infections. Front Cell Infect Microbiol 2022; 12:958858. [PMID: 36004333 PMCID: PMC9394440 DOI: 10.3389/fcimb.2022.958858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/11/2022] [Indexed: 11/20/2022] Open
Abstract
The incidence of Candida infections in intensive care units (ICU) has significantly increased in recent years, and these infections have become one of the most serious complications threatening the lives of ICU patients. The proportion of non-Candida albicans infections, such as Candida krusei and Candida glabrata infections, which are resistant to fluconazole, is increasing each year. Early identification of the strains causing Candida infections is important for the timely implementation of targeted treatments to save patients’ lives. However, the current methods of direct microscopy, culture, and histopathology, as well as other diagnostic methods, have many shortcomings, such as their low sensitivity and long assay times; therefore, they cannot meet the needs for early clinical diagnosis. Recombinant polymerase amplification (RPA) is a promising isothermal amplification technique that can be performed without sophisticated instruments and equipment, and is suitable for use in resource-poor areas. RPA combined with lateral flow strips (LFS) can be used to rapidly amplify and visualize target genes within 20 min. In this study, RPA-LFS was used to amplify the internal transcribed spacer 2 (ITS2) region of C. krusei. The primer-probe design was optimized by introduction of base mismatches (probe modification of five bases) to obtain a specific and sensitive primer-probe combination for the detection of clinical specimens. Thirty-five common clinical pathogens were tested with RPA-LFS to determine the specificity of the detection system. The RPA-LFS system specifically detected C. krusei without cross-reaction with other fungi or bacteria. A gradient dilution of the template was tested to explore the lower limit of detection and sensitivity of the assay. The sensitivity was 10 CFU/50 µL per reaction, without interference from genomic DNA of other species. The RPA-LFS and qPCR assays were performed on 189 clinical specimens to evaluate the detection performance of the RPA-LFS system. Seventy-six specimens were identified as C. krusei, indicating a detection rate of 40.2%. The results were consistent with those of qPCR and conventional culture methods. The RPA-LFS system established in our study provides a reliable molecular diagnostic method for the detection of C. krusei, thus meeting the urgent need for rapid, specific, sensitive, and portable clinical field testing.
Collapse
Affiliation(s)
- Mengdi Zhao
- Department of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Xizhen Wang
- Department of Medicine Laboratory, The Second People’s Hospital of Lianyungang (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Kun Wang
- Department of Medicine Laboratory, The Second People’s Hospital of Lianyungang (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Yuanyuan Li
- Department of Medicine Laboratory, The Second People’s Hospital of Lianyungang (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Yan Wang
- Department of Medicine Laboratory, The Second People’s Hospital of Lianyungang (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Ping Zhou
- Department of Medicine Laboratory, The Second People’s Hospital of Lianyungang (Cancer Hospital of Lianyungang), Lianyungang, China
- *Correspondence: Ping Zhou, ; Lei Wang, ; Wenjun Zhu,
| | - Lei Wang
- Department of Medicine Laboratory, The Second People’s Hospital of Lianyungang (Cancer Hospital of Lianyungang), Lianyungang, China
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- *Correspondence: Ping Zhou, ; Lei Wang, ; Wenjun Zhu,
| | - Wenjun Zhu
- Department of Medicine Laboratory, The Second People’s Hospital of Lianyungang (Cancer Hospital of Lianyungang), Lianyungang, China
- *Correspondence: Ping Zhou, ; Lei Wang, ; Wenjun Zhu,
| |
Collapse
|
4
|
Wang K, Huo L, Li Y, Zhu L, Wang Y, Wang L. Establishment of a rapid diagnosis method for Candida glabrata based on the ITS2 gene using recombinase polymerase amplification combined with lateral flow strips. Front Cell Infect Microbiol 2022; 12:953302. [PMID: 35967865 PMCID: PMC9366737 DOI: 10.3389/fcimb.2022.953302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Candida glabrata is the second or third most common Candida-associated species isolated from hospital-acquired infections, surpassing even C. albicans in some hospitals. With the rapid progression of the disease course of C. glabrata infections, there is an urgent need for a rapid and sensitive on-site assay for clinical diagnosis. Isothermal amplification is a recently developed method for rapid nucleic acid detection that is being increasingly used for on-site detection, especially recombinase polymerase amplification (RPA). RPA combined with lateral flow strips (LFS) can rapidly amplify and visually detect the target gene within 20 min. The whole detection process can be controlled within 30–60 min by rapid sample pre-treatment. In this study, RPA-LFS was used to amplify the internal transcribed spacer region 2 gene of C. glabrata. The primer–probe design was optimized by introducing base mismatches (probe modification of one base) to obtain a highly specific and sensitive primer–probe combination for clinical sample detection. RPA-LFS was performed on 23 common clinical pathogens to determine the specificity of the assay system. The RPA-LFS system specifically detected C. glabrata without cross-reaction with other fungi or bacteria. Gradient dilutions of the template were tested to explore the lower limit of detection of this detection system and to determine the sensitivity of the assay. The sensitivity was 10 CFU/µL, without interference from genomic DNA of other species. The RPA-LFS and qPCR assays were performed on 227 clinical samples to evaluate the detection performance of the RPA-LFS system. Eighty-five samples were identified as C. glabrata, representing a detection rate of 37.5%. The results were consistent with qPCR and conventional culture methods. The collective findings indicate a reliable molecular diagnostic method for the detection of C. glabrata, and to meet the urgent need for rapid, specific, sensitive, and portable clinical field-testing.
Collapse
Affiliation(s)
- Kun Wang
- Department of Medicine Laboratory, Second People’s Hospital of Lianyungang (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Li Huo
- Department of Medicine Laboratory, Second People’s Hospital of Lianyungang (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Yuanyuan Li
- Department of Medicine Laboratory, Second People’s Hospital of Lianyungang (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Lihua Zhu
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- *Correspondence: Lihua Zhu, ; Yan Wang, ; Lei Wang,
| | - Yan Wang
- Department of Medicine Laboratory, Second People’s Hospital of Lianyungang (Cancer Hospital of Lianyungang), Lianyungang, China
- *Correspondence: Lihua Zhu, ; Yan Wang, ; Lei Wang,
| | - Lei Wang
- Department of Medicine Laboratory, Second People’s Hospital of Lianyungang (Cancer Hospital of Lianyungang), Lianyungang, China
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- *Correspondence: Lihua Zhu, ; Yan Wang, ; Lei Wang,
| |
Collapse
|
5
|
Li M, Yin F, Song L, Mao X, Li F, Fan C, Zuo X, Xia Q. Nucleic Acid Tests for Clinical Translation. Chem Rev 2021; 121:10469-10558. [PMID: 34254782 DOI: 10.1021/acs.chemrev.1c00241] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nucleic acids, including deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), are natural biopolymers composed of nucleotides that store, transmit, and express genetic information. Overexpressed or underexpressed as well as mutated nucleic acids have been implicated in many diseases. Therefore, nucleic acid tests (NATs) are extremely important. Inspired by intracellular DNA replication and RNA transcription, in vitro NATs have been extensively developed to improve the detection specificity, sensitivity, and simplicity. The principles of NATs can be in general classified into three categories: nucleic acid hybridization, thermal-cycle or isothermal amplification, and signal amplification. Driven by pressing needs in clinical diagnosis and prevention of infectious diseases, NATs have evolved to be a rapidly advancing field. During the past ten years, an explosive increase of research interest in both basic research and clinical translation has been witnessed. In this review, we aim to provide comprehensive coverage of the progress to analyze nucleic acids, use nucleic acids as recognition probes, construct detection devices based on nucleic acids, and utilize nucleic acids in clinical diagnosis and other important fields. We also discuss the new frontiers in the field and the challenges to be addressed.
Collapse
Affiliation(s)
- Min Li
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fangfei Yin
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lu Song
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fan Li
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Xia
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
6
|
Bezerra AB, Kurian ASN, Easley CJ. Nucleic-Acid Driven Cooperative Bioassays Using Probe Proximity or Split-Probe Techniques. Anal Chem 2021; 93:198-214. [PMID: 33147015 PMCID: PMC7855502 DOI: 10.1021/acs.analchem.0c04364] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Xiong Z, Pan R, Hu Q, Yun W, Li N, Wang Q, Yang L. One-step triggered branched DNA nanostrucuture for ultra-sensitive electrochemical detection of microRNA. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Teng J, Huang L, Zhang L, Li J, Bai H, Li Y, Ding S, Zhang Y, Cheng W. High-sensitive immunosensing of protein biomarker based on interfacial recognition-induced homogeneous exponential transcription. Anal Chim Acta 2019; 1067:107-114. [PMID: 31047141 DOI: 10.1016/j.aca.2019.03.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/12/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023]
Abstract
A novel and versatile immunosensing strategy was developed for ultrasensitive and specific detection of proteins by organically integrating interfacial specific target recognition and homogeneous transcription amplification. In principle, classic antigen-antibody sandwich structure on the microplate could realize the specific identification of target protein. Biotinylated DNA probe was subsequently introduced by streptavidin-biotin system as a bridge linking interfacial and homogeneous reaction. The biotinylated DNA initiated exponential transcription amplification in the solution, which converted per target recognition event on the interface to numerous single-stranded RNA products in solution for highly sensitive fluorescence immunosensing. The proposed immunoassay based on interfacial recognition-induced homogeneous exponential transcription (IR-HET) for vascular endothelial growth factor (VEGF) detection showed a good linear range from 0.01 to 1000 pg/mL and the limit of detection as low as 1 fg/mL, which was 3 orders lower than traditional ELISA method. The established strategy was also successfully applied to directly detect VEGF from culture supernatants of tumor cells and clinical body fluid samples, proving very high sensitivity, selectivity and low matrix effect. Therefore, IR-HET-based immunosensing strategy might become a potential powerful tool be applied in ultrasensitive detection of low abundance protein biomarker for clinical early diagnosis, treatment and prognosis.
Collapse
Affiliation(s)
- Jie Teng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Lizhen Huang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Lutan Zhang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Jia Li
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China; Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Huili Bai
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Ying Li
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yuhong Zhang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China.
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
9
|
Signal-on electrochemiluminescence biosensor for microRNA-319a detection based on two-stage isothermal strand-displacement polymerase reaction. Biosens Bioelectron 2018; 107:34-39. [DOI: 10.1016/j.bios.2018.02.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 02/04/2018] [Indexed: 12/21/2022]
|
10
|
Zou C, Wei X, Zhang Q. Visual synchronization of two 3-variable Lotka–Volterra oscillators based on DNA strand displacement. RSC Adv 2018; 8:20941-20951. [PMID: 35542339 PMCID: PMC9080848 DOI: 10.1039/c8ra01393d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/21/2018] [Indexed: 01/30/2023] Open
Abstract
DNA strand displacement as a theoretic foundation is helpful in constructing reaction networks and DNA circuits.
Collapse
Affiliation(s)
- Chengye Zou
- School of Computer Science and Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Xiaopeng Wei
- School of Computer Science and Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Qiang Zhang
- School of Computer Science and Engineering
- Dalian University of Technology
- Dalian 116024
- China
- Key Laboratory of Advanced and Intelligent Computing
| |
Collapse
|
11
|
Target-induced proximity ligation triggers recombinase polymerase amplification and transcription-mediated amplification to detect tumor-derived exosomes in nasopharyngeal carcinoma with high sensitivity. Biosens Bioelectron 2017; 102:204-210. [PMID: 29145073 DOI: 10.1016/j.bios.2017.11.033] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/29/2017] [Accepted: 11/07/2017] [Indexed: 01/09/2023]
Abstract
Tumor-derived exosomes (TEXs) are extracellular vesicles that are continuously released into the blood by tumor cells and carry specific surface markers of the original tumor cells. Substantial evidence has implicated TEXs as attractive diagnostic markers for cancer. However, the detection of TEXs in blood at an early tumor stage is challenging due to their very low concentration. Here, we established a method called PLA-RPA-TMA assay that allows TEXs to be detected with high sensitivity and specificity. Based on two proximity ligation assay (PLA) probes that recognize a biomarker on a TEX, we generated a unique surrogate DNA signal for the specific biomarker, which was synchronously amplified twice by recombinase polymerase amplification (RPA) coupled with transcription-mediated amplification (TMA), and then the products of the RPA-TMA reaction were quantitatively detected using a gold nanoparticle-based colorimetric assay. We established proof-of-concept evidence for this approach using TEXs from nasopharyngeal carcinoma (NPC) cells, with a detection limit of 102 particles/mL, and reported the measurement of plasma Epstein-Barr virus latent membrane protein 1 (LPM1)-positive (LMP1+, accuracy: 0.956) and epidermal growth factor receptor (EGFR)-positive (EGFR+, accuracy: 0.906) TEXs as potent early diagnostic biomarkers for NPC.
Collapse
|