1
|
Douma C, Bowser MT. Assessing Surface Adsorption in Cyclic Olefin Copolymer Microfluidic Devices Using Two-Dimensional Nano Liquid Chromatography-Micro Free Flow Electrophoresis Separations. Anal Chem 2023; 95:18379-18387. [PMID: 38060457 PMCID: PMC10733905 DOI: 10.1021/acs.analchem.3c03014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 12/20/2023]
Abstract
Surface interactions are a concern in microscale separations, where analyte adsorption can decrease the speed, sensitivity, and resolution otherwise achieved by miniaturization. Here, we functionally characterize the surface adsorption of hot-embossed cyclic olefin copolymer (COC) micro free-flow electrophoresis (μFFE) devices using two-dimensional nLC × μFFE separations, which introduce a 3- to 5 s plug of analyte into the device and measure temporal broadening that arises from surface interactions. COC is an attractive material for microfluidic devices, but little is known about its potential for surface adsorption in applications with continuous fluid flow and temporal measurements. Adsorption was minimal for three small molecule dyes: positively charged rhodamine 123, negatively charged fluorescein, and neutral rhodamine 110. Temporal peak widths for the three dyes ranged from 3 to 7 s and did not change significantly with increasing transit distance. Moderate adsorption was observed for Chromeo P503-labeled myoglobin and cytochrome c with temporal peak widths around 20 s. Overall, the COC surface adsorption was low compared to traditional glass devices, where peak widths are on the order of minutes. Improvements in durability, long-term performance, and ease of fabrication, combined with low overall adsorption, make the COC μFFE devices a practical choice for applications involving time-resolved continuous detection.
Collapse
Affiliation(s)
- Cecilia
C. Douma
- Department of Chemistry, University
of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Michael T. Bowser
- Department of Chemistry, University
of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
LeMon MB, Douma CC, Burke GS, Bowser MT. Fabrication of µFFE Devices in COC via Hot Embossing with a 3D-Printed Master Mold. MICROMACHINES 2023; 14:1728. [PMID: 37763891 PMCID: PMC10534651 DOI: 10.3390/mi14091728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
The fabrication of high-performance microscale devices in substrates with optimal material properties while keeping costs low and maintaining the flexibility to rapidly prototype new designs remains an ongoing challenge in the microfluidics field. To this end, we have fabricated a micro free-flow electrophoresis (µFFE) device in cyclic olefin copolymer (COC) via hot embossing using a PolyJet 3D-printed master mold. A room-temperature cyclohexane vapor bath was used to clarify the device and facilitate solvent-assisted thermal bonding to fully enclose the channels. Device profiling showed 55 µm deep channels with no detectable feature degradation due to solvent exposure. Baseline separation of fluorescein, rhodamine 110, and rhodamine 123, was achieved at 150 V. Limits of detection for these fluorophores were 2 nM, 1 nM, and 10 nM, respectively, and were comparable to previously reported values for glass and 3D-printed devices. Using PolyJet 3D printing in conjunction with hot embossing, the full design cycle, from initial design to production of fully functional COC µFFE devices, could be completed in as little as 6 days without the need for specialized clean room facilities. Replicate COC µFFE devices could be produced from an existing embossing mold in as little as two hours.
Collapse
Affiliation(s)
| | | | | | - Michael T. Bowser
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
3
|
Haensch T, Zitzmann FD, Jahnke HG, Blaha ME, Paternoga E, Zeitler K, Belder D, Robitzki AA. Integration of Impedimetric Sensors for In Situ Electrochemical Impedance Spectroscopy in Free-Flow Electrophoresis Applications in Lab-on-Chip Systems. ACS Sens 2022; 7:3906-3914. [PMID: 36512685 DOI: 10.1021/acssensors.2c01938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Miniaturization and integration of chemical reactions into fluidic systems in combination with product purification or buffer exchange can reduce the amount of solvents and reactants required while increasing synthesis efficiency. A critical step is the regulation of flow rates to realize optimal synthesis conditions and high purification rates, so real-time, label-free monitoring is required in methods such as free-flow electrophoresis. Optical detection methods are widely used, but they often have complex excitation and detection setups that are disadvantageous for point-of-care applications. The method we have chosen is electrochemical impedance spectroscopy for detecting charged compounds in aqueous buffers with low ionic strength. Propranolol was selected for proof of concept and was separated from the organic solvent and the precursor oxirane by free-flow electrophoresis. For this purpose, electrode structures were fabricated in microfluidic channels by photolithographic lift-off technique and optimized in terms of positioning, electrode size and distance for sensitive detection, and quantification of propranolol in the nanomolar range. It is also noteworthy that the organic solvent dimethyl sulfoxide (DMSO) could be detected and quantified by an increased impedance magnitude. Subsequently, the optimized interdigital electrode structures were integrated into the outlet channels of the electrophoretic separation chamber to monitor the various outgoing fluidic streams and provide in-line control of the fluidic flows for the purification step. In conclusion, we can provide a microfluidic chip to monitor the separation efficiency of a substance mixture during free-flow electrophoresis without the need of complex analytical techniques using electrochemical impedance spectroscopy.
Collapse
Affiliation(s)
- Tobias Haensch
- Institute of Biochemistry, Center for Biomedicine and Biotechnology, Molecular Biologic-Biochemical Processing Technology, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Franziska D Zitzmann
- Institute of Biochemistry, Center for Biomedicine and Biotechnology, Molecular Biologic-Biochemical Processing Technology, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Heinz-Georg Jahnke
- Institute of Biochemistry, Center for Biomedicine and Biotechnology, Molecular Biologic-Biochemical Processing Technology, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Maximilian E Blaha
- Institute of Analytical Chemistry, Leipzig University, Technikum Analytikum, Linnéstr. 3, 04103 Leipzig, Germany
| | - Erik Paternoga
- Institute of Organic Chemistry, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany
| | - Kirsten Zeitler
- Institute of Organic Chemistry, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany
| | - Detlev Belder
- Institute of Analytical Chemistry, Leipzig University, Technikum Analytikum, Linnéstr. 3, 04103 Leipzig, Germany
| | - Andrea A Robitzki
- Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344 Karlsruhe, Germany
| |
Collapse
|
4
|
Kochmann S, Ivanov NA, Le Blanc JCY, Gorin BI, Krylov SN. Circular Geometry in Molecular Stream Separation to Facilitate Nonorthogonal Field-to-Flow Orientation. Anal Chem 2022; 94:9519-9524. [PMID: 35767324 DOI: 10.1021/acs.analchem.2c01829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular stream separation (MSS) is a promising complement for continuous-flow synthesis. MSS is driven by forces exerted on molecules by a field applied at an angle to the stream-carrying flow. MSS has only been performed with a 90° field-to-flow angle because of a rectangular geometry of canonic MSS; the second-order rotational symmetry of a rectangle prevents any other angle. Here, we propose a noncanonic circular geometry for MSS, which better aligns with the polar nature of MSS and allows changing the field-to-flow. We conducted in silico and experimental studies of circular geometry for continuous-flow electrophoresis (CFE, an MSS method). We proved two advantages of circular CFE over its rectangular counterpart. First, circular CFE can support better flow and electric-field uniformity than rectangular CFE. Second, the nonorthogonal field-to-flow orientation, achievable in circular CFE, can result in a higher stream resolution than the orthogonal one. Considering that circular CFE devices are not more complex in fabrication than rectangular ones, we foresee that circular CFE will serve as a new standard and a testbed for the investigation and creation of new CFE modalities.
Collapse
Affiliation(s)
- Sven Kochmann
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Nikita A Ivanov
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | | | - Boris I Gorin
- Eurofins CDMO Alphora, 2395 Speakman Drive #2001, Mississauga, Ontario L5K 1B3, Canada
| | - Sergey N Krylov
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
5
|
Kochmann S, Ivanov NA, Lucas KS, Krylov SN. Topino: A Graphical Tool for Quantitative Assessment of Molecular Stream Separations. Anal Chem 2021; 93:9980-9985. [PMID: 34255479 DOI: 10.1021/acs.analchem.1c01229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In molecular-stream separation (MSS), a stream of a multicomponent mixture is separated into multiple streams of individual components. Quantitative evaluation of MSS data has been a bottleneck in MSS for decades as there was no conventional way to present the data in a reproducible and uniform fashion. The roots of the problem were in the multidimensional nature of MSS data; even in the ideal case of steady-state separation, the data is three-dimensional: intensity and two spatial coordinates. We recently found a way to reduce the dimensionality via presenting the MSS data in a polar coordinate system and convoluting the data via integration of intensity along the radius axis. The result of this convolution is an angulagram, a simple 2D plot presenting integrated intensity vs angle. Not only does an angulagram simplify the visual assessment, but it also allows the determination of three quantitative parameters characterizing the quality of MSS: stream width, stream linearity, and stream deflection. Reliably converting an MSS image into an angulagram and accurately determining the stream parameters requires an advanced and user-friendly software tool. In this technical note, we introduce such a tool: the open-source software Topino available at https://github.com/Schallaven/topino. Topino is a stand-alone program with a modern graphical user interface that allows processing an MSS image in a fast (<2 min) and straightforward way. The robustness and ruggedness of Topino were confirmed by comparing the results obtained by three users. Topino removes the analytical bottleneck in MSS and will be an indispensable tool for MSS users with varying levels of experience.
Collapse
Affiliation(s)
- Sven Kochmann
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Nikita A Ivanov
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Kevin S Lucas
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Sergey N Krylov
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
6
|
Jender M, Höving S, Novo P, Freier E, Janasek D. Coupling Miniaturized Free-Flow Electrophoresis to Mass Spectrometry via a Multi-Emitter ESI Interface. Anal Chem 2021; 93:7204-7209. [PMID: 33939916 DOI: 10.1021/acs.analchem.1c00200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present a novel multi-emitter electrospray ionization (ESI) interface for the coupling of microfluidic free-flow electrophoresis (μFFE) with mass spectrometry (MS). The effluents of the μFFE outlets are analyzed in near real-time, allowing a direct optimization of the electrophoretic separation and an online monitoring of qualitative sample compositions. The short measurement time of just a few seconds for all outlets even enables a reasonable time-dependent monitoring. As a proof of concept, we employ the multi-emitter ESI interface for the continuous identification of analytes at 15 μFFE outlets via MS to optimize the μFFE separation of important players of cellular respiration in operando. The results indicate great potential of the presented system in downstream processing control, for example, for the monitoring and purification of products in continuous-flow microreactors.
Collapse
Affiliation(s)
- Matthias Jender
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Str. 11, 44139 Dortmund, Germany
| | - Stefan Höving
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Str. 11, 44139 Dortmund, Germany
| | - Pedro Novo
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Str. 11, 44139 Dortmund, Germany
| | - Erik Freier
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Str. 11, 44139 Dortmund, Germany
| | - Dirk Janasek
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Str. 11, 44139 Dortmund, Germany
| |
Collapse
|
7
|
Prüfert C, Urban RD, Fischer TG, Villatoro J, Riebe D, Beitz T, Belder D, Zeitler K, Löhmannsröben HG. In situ monitoring of photocatalyzed isomerization reactions on a microchip flow reactor by IR-MALDI ion mobility spectrometry. Anal Bioanal Chem 2020; 412:7899-7911. [PMID: 32918557 PMCID: PMC7550389 DOI: 10.1007/s00216-020-02923-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 01/21/2023]
Abstract
The visible-light photocatalytic E/Z isomerization of olefins can be mediated by a wide spectrum of triplet sensitizers (photocatalysts). However, the search for the most efficient photocatalysts through screenings in photo batch reactors is material and time consuming. Capillary and microchip flow reactors can accelerate this screening process. Combined with a fast analytical technique for isomer differentiation, these reactors can enable high-throughput analyses. Ion mobility (IM) spectrometry is a cost-effective technique that allows simple isomer separation and detection on the millisecond timescale. This work introduces a hyphenation method consisting of a microchip reactor and an infrared matrix-assisted laser desorption ionization (IR-MALDI) ion mobility spectrometer that has the potential for high-throughput analysis. The photocatalyzed E/Z isomerization of ethyl-3-(pyridine-3-yl)but-2-enoate (E-1) as a model substrate was chosen to demonstrate the capability of this device. Classic organic triplet sensitizers as well as Ru-, Ir-, and Cu-based complexes were tested as catalysts. The ionization efficiency of the Z-isomer is much higher at atmospheric pressure which is due to a higher proton affinity. In order to suppress proton transfer reactions by limiting the number of collisions, an IM spectrometer working at reduced pressure (max. 100 mbar) was employed. This design reduced charge transfer reactions and allowed the quantitative determination of the reaction yield in real time. Among 14 catalysts tested, four catalysts could be determined as efficient sensitizers for the E/Z isomerization of ethyl cinnamate derivative E-1. Conversion rates of up to 80% were achieved in irradiation time sequences of 10 up to 180 s. With respect to current studies found in the literature, this reduces the acquisition times from several hours to only a few minutes per scan.
Collapse
Affiliation(s)
- Chris Prüfert
- University of Potsdam, Physical Chemistry, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.
| | - Raphael David Urban
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany
| | - Tillmann Georg Fischer
- Institute of Organic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - José Villatoro
- University of Potsdam, Physical Chemistry, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Daniel Riebe
- University of Potsdam, Physical Chemistry, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Toralf Beitz
- University of Potsdam, Physical Chemistry, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Detlev Belder
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany
| | - Kirsten Zeitler
- Institute of Organic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Hans-Gerd Löhmannsröben
- University of Potsdam, Physical Chemistry, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.
| |
Collapse
|
8
|
Scheidt T, Kartanas T, Peter Q, Schneider MM, Saar KL, Müller T, Challa PK, Levin A, Devenish S, Knowles TPJ. Multidimensional protein characterisation using microfluidic post-column analysis. LAB ON A CHIP 2020; 20:2663-2673. [PMID: 32588855 DOI: 10.1039/d0lc00219d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The biological function of proteins is dictated by the formation of supra-molecular complexes that act as the basic machinery of the cell. As such, measuring the properties of protein species in heterogeneous mixtures is of key importance for understanding the molecular basis of biological function. Here, we describe the combination of analytical microfluidic tools with liquid chromatography for multidimensional characterisation of biomolecules in complex mixtures in the solution phase. Following chromatographic separation, a small fraction of the flow-through is distributed to multiple microfluidic devices for analysis. The microfluidic device developed here allows the simultaneous determination of the hydrodynamic radius, electrophoretic mobility, effective molecular charge and isoelectric point of isolated protein species. We demonstrate the operation principle of this approach with a mixture of three unlabelled model proteins varying in size and charge. We further extend the analytical potential of the presented approach by analysing a mixture of interacting streptavidin with biotinylated BSA and fluorophores, which form a mixture of stable complexes with diverse biophysical properties and stoichiometries. The presented microfluidic device positioned in-line with liquid chromatography presents an advanced tool for characterising multidimensional physical properties of proteins in biological samples to further understand the assembly/disassembly mechanism of proteins and the nature of complex mixtures.
Collapse
Affiliation(s)
- Tom Scheidt
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ivanov NA, Kochmann S, Krylov SN. Visualization of Streams of Small Organic Molecules in Continuous-Flow Electrophoresis. Anal Chem 2020; 92:2907-2910. [PMID: 31986876 DOI: 10.1021/acs.analchem.9b05734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Continuous-flow electrophoresis (CFE) separates a stream of a multicomponent mixture into multiple streams of individual components inside a thin rectangular chamber. CFE will be able to benefit flow chemistry when it is both compatible with nonaqueous solvents utilized in organic synthesis and capable of generically detecting streams of small organic molecules. While stable nonaqueous CFE has been demonstrated, generically detecting molecular streams has not been achieved yet. Here we propose a general approach for molecular stream visualization in CFE via analyte-caused obstruction of excitation of a fluorescent layer underneath the separation chamber-fluorescent sublayer-based visualization (FSV). The concept of FSC-based visualization has been adapted from visualization of small organic molecules on fluorescent plates in thin-layer chromatography. We designed and fabricated a CFE device with one side made of quartz and another side made of UV-absorbing visibly fluorescent, chemically inert, machinable plastic. This device was demonstrated to support nonaqueous CFE of small organic molecules and quantitative detection of their streams in real-time with a limit of detection below 100 μM. Thus, CFE may satisfy conditions required for its seamless integration with continuous flow organic synthesis in flow chemistry.
Collapse
Affiliation(s)
- Nikita A Ivanov
- Department of Chemistry and Centre for Research on Biomolecular Interactions , York University , Toronto , Ontario M3J 1P3 , Canada
| | - Sven Kochmann
- Department of Chemistry and Centre for Research on Biomolecular Interactions , York University , Toronto , Ontario M3J 1P3 , Canada
| | - Sergey N Krylov
- Department of Chemistry and Centre for Research on Biomolecular Interactions , York University , Toronto , Ontario M3J 1P3 , Canada
| |
Collapse
|
10
|
Kristoff CJ, Bwanali L, Veltri LM, Gautam GP, Rutto PK, Newton EO, Holland LA. Challenging Bioanalyses with Capillary Electrophoresis. Anal Chem 2020; 92:49-66. [PMID: 31698907 PMCID: PMC6995690 DOI: 10.1021/acs.analchem.9b04718] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Courtney J. Kristoff
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Lloyd Bwanali
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Lindsay M. Veltri
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Gayatri P. Gautam
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Patrick K. Rutto
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Ebenezer O. Newton
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Lisa A. Holland
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
11
|
Ivanov NA, Liu Y, Kochmann S, Krylov SN. Non-aqueous continuous-flow electrophoresis (NACFE): potential separation complement for continuous-flow organic synthesis. LAB ON A CHIP 2019; 19:2156-2160. [PMID: 31161184 DOI: 10.1039/c9lc00460b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We introduce non-aqueous continuous-flow electrophoresis (NACFE) in which the electrolyte is a solution of an organic salt in an aprotic organic solvent. NACFE can maintain steady-state separation of multiple hydrophobic organic species into individual molecular streams. It is a potential separation complement for continuous-flow organic synthesis. This proof-of-concept work will serve as a justification for efforts towards making NACFE a practical tool in flow chemistry.
Collapse
Affiliation(s)
- Nikita A Ivanov
- Centre for Research on Biomolecular Interactions and Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada.
| | | | | | | |
Collapse
|
12
|
Rudisch BM, Pfeiffer SA, Geissler D, Speckmeier E, Robitzki AA, Zeitler K, Belder D. Nonaqueous Micro Free-Flow Electrophoresis for Continuous Separation of Reaction Mixtures in Organic Media. Anal Chem 2019; 91:6689-6694. [DOI: 10.1021/acs.analchem.9b00714] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Benjamin M. Rudisch
- Institute of Analytical Chemistry, Leipzig University, Johannisallee 29, Leipzig 04103, Germany
| | - Simon A. Pfeiffer
- Institute of Analytical Chemistry, Leipzig University, Johannisallee 29, Leipzig 04103, Germany
| | - David Geissler
- Institute of Analytical Chemistry, Leipzig University, Johannisallee 29, Leipzig 04103, Germany
| | - Elisabeth Speckmeier
- Institute of Organic Chemistry, Leipzig University, Johannisallee 29, Leipzig 04103, Germany
| | - Andrea A. Robitzki
- Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, Leipzig 04103, Germany
| | - Kirsten Zeitler
- Institute of Organic Chemistry, Leipzig University, Johannisallee 29, Leipzig 04103, Germany
| | - Detlev Belder
- Institute of Analytical Chemistry, Leipzig University, Johannisallee 29, Leipzig 04103, Germany
| |
Collapse
|
13
|
Akwi FM, Watts P. Continuous flow chemistry: where are we now? Recent applications, challenges and limitations. Chem Commun (Camb) 2018; 54:13894-13928. [PMID: 30483683 DOI: 10.1039/c8cc07427e] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A general outlook of the changing face of chemical synthesis is provided in this article through recent applications of continuous flow processing in both industry and academia. The benefits, major challenges and limitations associated with the use of this mode of processing are also given due attention as an attempt to put into perspective the current position of continuous flow processing, either as an alternative or potential combinatory technology for batch processing.
Collapse
Affiliation(s)
- Faith M Akwi
- Nelson Mandela University, University Way, Port Elizabeth, 6031, South Africa.
| | | |
Collapse
|
14
|
Kochmann S, Krylov SN. Quantitative Characterization of Molecular-Stream Separation. Anal Chem 2018; 90:9504-9509. [DOI: 10.1021/acs.analchem.8b02186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Sven Kochmann
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Sergey N. Krylov
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|