1
|
Huang CT, Gurrani S, Hu ST, Wang CC, Tsai PC, Prakasham K, Tsai CC, Fang LH, Krishnamoorthi V, Wang CE, Chen YH, Ponnusamy VK. Rapid biomonitoring of fluoropyrimidine-based chemotherapy drugs and their biometabolites in colorectal cancer patients' blood samples using an in-syringe-based fast drug extraction technique followed by LC-MS/MS analysis. J Chromatogr A 2025; 1740:465575. [PMID: 39642663 DOI: 10.1016/j.chroma.2024.465575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Patients with dihydropyrimidine dehydrogenase (DPD) deficiency in peripheral mononuclear cells are at higher risk of severe toxicity due to the improper dose of fluorouracil-based chemotherapy drugs, which has become an essential aspect for consideration in clinical studies. 5-fluorouracil (5-FU) is a first-line and second-line chemotherapy drug in adjuvant, neoadjuvant, or palliative therapy settings to treat solid tumors and cancers. In this work, a novel in-syringe-based fast drug extraction (IS-FaDEx) technique followed by UHPLC-MS/MS detection was developed for rapid biomonitoring of 5-FU and its biometabolites in human blood samples. In this process, the 5-FU drug and its metabolites were extracted using 1 mL of extraction solvent, and then, the cleanup was performed with solid sorbents under an semi-automated setup. Under optimized conditions, method validation results showed an excellent linearity range from 1∼1000 ng mL-1 with correlation coefficients >0.99. The detection limits varied between 0.4 and 2.0 ng mL-1, recoveries of 5-FU and its biometabolites ranged from 94.9-107.5%, and relative standard deviation were between 3.1-8.3%. The overall analytical GREEnness (AGREE) score for the proposed method was determined to be 0.83 using the AGREE metric approach, showing an excellent greenness profile. Therefore, the developed method proved efficient, robust, semi-automated, and rapid, which can considerably minimize solvent, salts, and sorbent usage following green and sustainable chemistry principles. The current approach showed effectiveness in drug monitoring investigations and can be beneficial for enhancing the efficacy and safety of 5-FU-based chemotherapy in colorectal cancer patients.
Collapse
Affiliation(s)
- Cheng-Te Huang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City-807, Taiwan
| | - Swapnil Gurrani
- Research Center for Precision Environmental Medicine, College of Medicine, Kaohsiung Medical University (KMU), Kaohsiung City-807, Taiwan; Department of Applied Sciences and Humanities, Invertis University, Bareilly, Uttar Pradesh, 243122, India
| | - Shih-Tao Hu
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City-807, Taiwan
| | - Chun-Chi Wang
- College of Pharmacy, Kaohsiung Medical University (KMU), Kaohsiung City-807, Taiwan
| | - Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City-807, Taiwan; Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
| | - Karthikeyan Prakasham
- Research Center for Precision Environmental Medicine, College of Medicine, Kaohsiung Medical University (KMU), Kaohsiung City-807, Taiwan; PhD Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University (KMU), Kaohsiung City-807, Taiwan
| | - Chia-Ching Tsai
- Department of Pharmacy, Taitung Mackay Memorial Hospital, Taiwan
| | - Li-Hua Fang
- Department of Pharmacy, Koo Foundation Sun Yat-Sen Cancer Center, Taipei, 11259, Taiwan
| | | | - Chao-En Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City-807, Taiwan; Research and Development Division, Great Engineering Technology (GETECH) Corporation, No.392, Yucheng Rd., Zuoying District, Kaohsiung City, 813 Taiwan
| | - Yi-Hsun Chen
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City-807, Taiwan; School of Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan.
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City-807, Taiwan; Research Center for Precision Environmental Medicine, College of Medicine, Kaohsiung Medical University (KMU), Kaohsiung City-807, Taiwan; PhD Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University (KMU), Kaohsiung City-807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung Medical University, Kaohsiung, City-807, Taiwan; Department of Chemistry, National Sun Yat-sen University (NSYSU), Kaohsiung City, 804, Taiwan.
| |
Collapse
|
2
|
Landová P, Mravcová L, Poláková Š, Kosubová P. Application of QuEChERS extraction and LC-MS/MS for determination of pharmaceuticals in sewage sludges sampled across the Czech Republic. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63946-63958. [PMID: 39520625 PMCID: PMC11602849 DOI: 10.1007/s11356-024-35508-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
The use of pharmaceuticals entails a significant risk of environmental contamination. Wastewater treatment plants (WWTPs) are considered to be the main contributors to contamination as they ineffectively eliminate these compounds from wastewater. Simultaneously, they produce solid waste, sludge, which often contains a variety of retained pollutants, including pharmaceuticals. Since sewage sludge is frequently applied to agricultural soil due to its rich nutrient content, pollutants are introduced into the environment in this way. Only a few studies have been carried out on the topic of the analysis of pharmaceuticals in sludge. Therefore, information on the occurrence of pharmaceuticals in sludge is limited. The present study employed quick, easy, cheap, effective, rugged and safe (QuEChERS) extraction and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) analysis to establish a simple and reliable procedure for determining 16 pharmaceuticals (antibiotics, anticonvulsants, antidepressants and β-blockers) in sewage sludge. The method has been thoroughly validated, and parameters such as linear range, accuracy, precision, matrix effects and detection and quantification limits were assessed. Our method achieved low limits of quantification (0.5-9.0 µg kg-1) and satisfactory recoveries (51-101%). Forty sludge samples from different WWTPs across the Czech Republic were analysed. Fourteen compounds were detected and quantified in most samples, with antidepressants having the highest detection frequency and overall content. Sertraline, with a mean concentration of 521.0 µg kg-1, was notably prevalent alongside its metabolite norsertraline (mean concentration 204.9 µg kg-1). The antibiotic azithromycin was also found at higher levels (mean concentration 185.1 µg kg-1).
Collapse
Affiliation(s)
- Pavlína Landová
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00, Brno, Czech Republic.
- Central Institute for Supervising and Testing in Agriculture (CISTA), Hroznová 63/2, 603 00, Brno, Czech Republic.
| | - Ludmila Mravcová
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00, Brno, Czech Republic
| | - Šárka Poláková
- Central Institute for Supervising and Testing in Agriculture (CISTA), Hroznová 63/2, 603 00, Brno, Czech Republic
| | - Petra Kosubová
- Central Institute for Supervising and Testing in Agriculture (CISTA), Hroznová 63/2, 603 00, Brno, Czech Republic
| |
Collapse
|
3
|
Newmeyer MN, Lyu Q, Sobus JR, Williams AJ, Nachman KE, Prasse C. Combining Nontargeted Analysis with Computer-Based Hazard Comparison Approaches to Support Prioritization of Unregulated Organic Contaminants in Biosolids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12135-12146. [PMID: 38916220 PMCID: PMC11381038 DOI: 10.1021/acs.est.4c02934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Biosolids are a byproduct of wastewater treatment that can be beneficially applied to agricultural land as a fertilizer. While U.S. regulations limit metals and pathogens in biosolids intended for land applications, no organic contaminants are currently regulated. Novel techniques can aid in detection, evaluation, and prioritization of biosolid-associated organic contaminants (BOCs). For example, nontargeted analysis (NTA) can detect a broad range of chemicals, producing data sets representing thousands of measured analytes that can be combined with computational toxicological tools to support human and ecological hazard assessment and prioritization. We combined NTA with a computer-based tool from the U.S. EPA, the Cheminformatics Hazard Comparison Module (HCM), to identify and prioritize BOCs present in U.S. and Canadian biosolids (n = 16). Four-hundred fifty-one features were detected in at least 80% of samples, with identities of 92 compounds confirmed or assigned probable structures. These compounds were primarily categorized as endogenous compounds, pharmaceuticals, industrial chemicals, and fragrances. Examples of top prioritized compounds were p-cresol and chlorophene, based on human health end points, and fludioxonil and triclocarban, based on ecological health end points. Combining NTA results with hazard comparison data allowed us to prioritize compounds to be included in future studies of the environmental fate and transport of BOCs.
Collapse
Affiliation(s)
- Matthew N Newmeyer
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Qinfan Lyu
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Jon R Sobus
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, United States
| | - Antony J Williams
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, United States
| | - Keeve E Nachman
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland 21205, United States
- Risk Sciences and Public Policy Institute, Johns Hopkins University, Baltimore, Maryland 21205, United States
- Center for a Livable Future, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Carsten Prasse
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland 21205, United States
- Risk Sciences and Public Policy Institute, Johns Hopkins University, Baltimore, Maryland 21205, United States
| |
Collapse
|
4
|
Gkountouras D, Boti V, Albanis T. High resolution mass spectrometry targeted analysis and suspect screening of pesticide residues in fruit samples and assessment of dietary exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124143. [PMID: 38735465 DOI: 10.1016/j.envpol.2024.124143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Fruits consistently hold a prominent position in healthy dietary habits. Pesticides are used to manage plant diseases, achieve sustainable production, and maintain high food standards. This study utilized a comprehensive analytical technique that involved both targeted analysis and suspect screening. Analysis was conducted using Ultra-high-performance liquid chromatography coupled with hybrid Linear Trap Quadrupole (LTQ)/Orbitrap High Resolution Mass Spectrometry (HRMS) to examine pesticide levels in fruits. The matrices chosen comprised fruit commodities that are commonly consumed in Greece, including table grapes, apples, pears, citrus fruits, and strawberries. The QuEChERS approach was effectively validated for 30 specific pesticides. According to the method acceptance criteria established by SANTE, the QuEChERS method have shown exceptional efficiency in extracting the chosen pesticides, with recovery rates ranging from 70% to 120% in three concentration levels (10, 50, 100 μg kg-1). It also exhibited outstanding linearity, with an R2 more than 0.99. The method exhibited exceptional precision, with relative standard deviations (RSDs) below 20%. Additionally, the combined measurement uncertainty (MU%) was found to be acceptable, remaining below 50% The quantification limits were below 10 μg kg-1 for the majority of the analytes, satisfying the Maximum Residue Levels (MRLs) established by the European Commission. Following targeted analysis, a dietary risk assessment was performed, revealing that both acute and chronic hazard quotients (aHQ and cHQ), along with chronic hazard index (cHI) were below 1, which indicated that the studied commodities are safe for human consumption. In addition, a suspect screening workflow was developed based on an in-house database comprising 355 pesticides commonly applied to the relevant commodities and related transformation products (TPs). Overall, through suspect screening, twenty-two additional pesticides and TPs not included in the target list were identified. Hence, this approach is anticipated to function as proactive alert system guaranteeing the long-term viability of agricultural production.
Collapse
Affiliation(s)
| | - Vasiliki Boti
- Department of Chemistry, University of Ioannina, Ioannina, 45110, Greece; Institute of Environment and Sustainable Development, University Research Center of Ioannina (URCI), Ioannina, 45110, Greece.
| | - Triantafyllos Albanis
- Department of Chemistry, University of Ioannina, Ioannina, 45110, Greece; Institute of Environment and Sustainable Development, University Research Center of Ioannina (URCI), Ioannina, 45110, Greece
| |
Collapse
|
5
|
Koloka O, Koulama M, Hela D, Albanis T, Konstantinou I. Determination of Multiclass Pharmaceutical Residues in Milk Using Modified QuEChERS and Liquid-Chromatography-Hybrid Linear Ion Trap/Orbitrap Mass Spectrometry: Comparison of Clean-Up Approaches and Validation Studies. Molecules 2023; 28:6130. [PMID: 37630381 PMCID: PMC10515318 DOI: 10.3390/molecules28166130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
A multi-residue method was developed to identify and quantify pharmaceutical drug residues in full-fat milk, using a modified QuEChERS extraction procedure and sonication combined with Ultra-High-Performance Liquid Chromatography-High-Resolution Orbitrap Mass Spectrometry (UHPLC-HR-Orbitrap-MS). Sample preparation involves three different QuEChERS extraction procedures and sorbents for the purification step. The optimized modified extraction method, combined with the clean-up approaches using C18 and the EMR-Lipid sorbent, has been validated in terms of linearity, recovery, precision, LOD and LOQ, matrix effects (ME) and expanded uncertainty. The optimized method showed a linearity >0.9903, recoveries within the range 65.1-120.1%, precision (expressed as %RSD) <17.5%, medium (<39.9%) to low (<16.7%) matrix effects and acceptable expanded uncertainty (<33.1%). Finally, the proposed method was applied to representative real samples of milk (by local markets), revealing the existence of one pharmaceutical drug (imidocarb) in one sample.
Collapse
Affiliation(s)
- Ourania Koloka
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (O.K.); (M.K.); (T.A.)
| | - Marioanna Koulama
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (O.K.); (M.K.); (T.A.)
| | - Dimitra Hela
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (O.K.); (M.K.); (T.A.)
- University Research and Innovation Center, Institute of Environment and Sustainable Development, University of Ioannina, 45110 Ioannina, Greece
| | - Triantafyllos Albanis
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (O.K.); (M.K.); (T.A.)
- University Research and Innovation Center, Institute of Environment and Sustainable Development, University of Ioannina, 45110 Ioannina, Greece
| | - Ioannis Konstantinou
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (O.K.); (M.K.); (T.A.)
- University Research and Innovation Center, Institute of Environment and Sustainable Development, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
6
|
Accurate Determination of Pesticide Residues in Milk by Sonication-QuEChERS Extraction and LC-LTQ/Orbitrap Mass Spectrometry. SEPARATIONS 2023. [DOI: 10.3390/separations10030146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
A modified, quick, easy, cheap, effective, rugged, and safe (QuEChERS) extraction procedure combined with sonication and Ultra-High Performance Liquid Chromatography–Orbitrap-Mass Spectrometry (UHPLC–Orbitrap-MS) was developed as a sensitive and reliable methodology for the determination of multiclass pesticides in full-fat milk. Different amounts of EMR-lipid sorbent were assayed for the cleanup step in order to achieve both acceptably high recoveries and low co-extractives in the final extracts. Accurate mass measurements of the analyte’s pseudo-molecular ions and tandem MS fragmentation were used to quantify and identify the target pesticides. Analytical performance characteristics of the method, such as linearity, recovery, precision, the limit of detection (LOD) and quantification (LOQ), matrix effects (ME), and expanded uncertainty, have been determined for method validation fulfilling all criteria for its use as a validated routine method. The method was successfully applied to real samples (by local farms and commercial), revealing the presence of carbendazim in one milk sample at a concentration level below the maximum residue limits.
Collapse
|
7
|
Koronaiou LA, Nannou C, Xanthopoulou N, Seretoudi G, Bikiaris D, Lambropoulou DA. High-resolution mass spectrometry-based strategies for the target analysis and suspect screening of per- and polyfluoroalkyl substances in aqueous matrices. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
A Systematic Review of Photolysis and Hydrolysis Degradation Modes, Degradation Mechanisms, and Identification Methods of Pesticides. J CHEM-NY 2022. [DOI: 10.1155/2022/9552466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The degradation modes and characteristics of different pesticides were introduced. In addition, this paper also describes the degradation mechanism of different pesticides, classifies, and summarizes the methods of degradation products identification. For the sake of human life health and better biological environment, we should have a familiar knowledge of the natural degradation of pesticides and understand the photo-hydrolysis and its influencing factors (temperature, pH, light, etc.). Through the degradation mechanism and influencing factors, the degradation time could be accelerated and it also provides a theoretical basis and basic support for the treatment of pesticide residues in the future.
Collapse
|
9
|
Advances in Analysis of Contaminants in Foodstuffs on the Basis of Orbitrap Mass Spectrometry: a Review. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Kosma CI, Koloka OL, Albanis TA, Konstantinou IK. Accurate mass screening of pesticide residues in wine by modified QuEChERS and LC-hybrid LTQ/Orbitrap-MS. Food Chem 2021; 360:130008. [PMID: 34000630 DOI: 10.1016/j.foodchem.2021.130008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 10/21/2022]
Abstract
In this research, a quick, easy, cheap, effective, rugged, and safe (QuEChERS) extraction procedure and Ultra-High Performance Liquid Chromatography-Orbitrap-Mass Spectrometry (UHPLC-Orbitrap-MS), were combined to obtain a sensitive and rapid method for the determination of multiclass pesticides in white and red wines. The optimization strategy involved the selection of buffering conditions, by applying different QuEChERS procedures and sorbents for the cleanup step in order to achieve acceptably high recoveries and low co-extractives in the final extracts. Identification was based on both accurate mass and retention time, while further confirmation was achieved by MS fragmentation. The method was evaluated in terms of linearity, recovery, precision, limit of detection (LOD) and quantification (LOQ), matrix effects (ME) and expanded uncertainty. The validated method was successfully applied to real samples (home-made and commercial) revealing the presence of two selected fungicides, in relatively low levels compared to the MRLs defined by the EU for vinification grapes.
Collapse
Affiliation(s)
- Christina I Kosma
- Department of Chemistry, University of Ioannina, Ioannina 45110, Greece
| | - Ourania L Koloka
- Department of Chemistry, University of Ioannina, Ioannina 45110, Greece
| | - Triantafyllos A Albanis
- Department of Chemistry, University of Ioannina, Ioannina 45110, Greece; Institute of Environment and Sustainable Development, University Research Center of Ioannina (URCI), Ioannina 45110, Greece
| | - Ioannis K Konstantinou
- Department of Chemistry, University of Ioannina, Ioannina 45110, Greece; Institute of Environment and Sustainable Development, University Research Center of Ioannina (URCI), Ioannina 45110, Greece.
| |
Collapse
|
11
|
Benedetti B, Majone M, Cavaliere C, Montone CM, Fatone F, Frison N, Laganà A, Capriotti AL. Determination of multi-class emerging contaminants in sludge and recovery materials from waste water treatment plants: Development of a modified QuEChERS method coupled to LC–MS/MS. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104732] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
12
|
Gómez-Ramos MDM, Nannou C, Martínez Bueno MJ, Goday A, Murcia-Morales M, Ferrer C, Fernández-Alba AR. Pesticide residues evaluation of organic crops. A critical appraisal. Food Chem X 2020; 5:100079. [PMID: 32083251 PMCID: PMC7019120 DOI: 10.1016/j.fochx.2020.100079] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 11/18/2022] Open
Abstract
In the last decade, the consumption trend of organic food has increased dramatically worldwide. Since only a few pesticides are authorized in organic crops, concentrations are expected to range at zero or ultra-trace levels. In this context, the aim of the present study was to investigate the need for an improvement in the residue controls at very low concentrations (<0.010 mg kg-1) and to assess the impact of the scope of the analytical methods for this type of crops. For that purpose, a monitoring study for fruit and vegetable samples covering a wide range of pesticides (3 2 8) at low LOQs (0.002-0.005 mg kg-1) was developed. The results showed that the impact of applying analytical methods with low LOQs was not very relevant in the majority of the cases. However, a wide scope presented a high influence on this evaluation, especially regarding the inclusion of very polar compounds and metabolites.
Collapse
Affiliation(s)
- María del Mar Gómez-Ramos
- Centro de Innovación y Tecnología COEXPHAL, La Venta del Viso, 04746 La Mojonera, Almería, Spain
- University of Almería, Department of Physics and Chemistry, Agrifood Campus of International Excellence (ceiA3), Ctra Sacramento s/n La Cañada de San Urbano, 04120 Almería, Spain
| | - Christina Nannou
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - María Jesús Martínez Bueno
- University of Almería, Department of Physics and Chemistry, Agrifood Campus of International Excellence (ceiA3), Ctra Sacramento s/n La Cañada de San Urbano, 04120 Almería, Spain
| | - Ana Goday
- University of Almería, Department of Physics and Chemistry, Agrifood Campus of International Excellence (ceiA3), Ctra Sacramento s/n La Cañada de San Urbano, 04120 Almería, Spain
| | - María Murcia-Morales
- University of Almería, Department of Physics and Chemistry, Agrifood Campus of International Excellence (ceiA3), Ctra Sacramento s/n La Cañada de San Urbano, 04120 Almería, Spain
| | - Carmen Ferrer
- University of Almería, Department of Physics and Chemistry, Agrifood Campus of International Excellence (ceiA3), Ctra Sacramento s/n La Cañada de San Urbano, 04120 Almería, Spain
| | - Amadeo R. Fernández-Alba
- University of Almería, Department of Physics and Chemistry, Agrifood Campus of International Excellence (ceiA3), Ctra Sacramento s/n La Cañada de San Urbano, 04120 Almería, Spain
| |
Collapse
|
13
|
A reliable LC-MS/MS-based method for trace level determination of 50 medium to highly polar pesticide residues in sediments and ecological risk assessment. Anal Bioanal Chem 2019; 411:7981-7996. [DOI: 10.1007/s00216-019-02188-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/16/2019] [Accepted: 10/02/2019] [Indexed: 10/25/2022]
|
14
|
QuEChERS—A Green Alternative Approach for the Determination of Pharmaceuticals and Personal Care Products in Environmental and Food Samples. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-981-13-9105-7_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Jia W, Shi L, Zhang F, Chang J, Chu X. High-throughput mass spectrometry scheme for screening and quantification of flavonoids in antioxidant nutraceuticals. J Chromatogr A 2019; 1608:460408. [PMID: 31378531 DOI: 10.1016/j.chroma.2019.460408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/12/2019] [Accepted: 07/26/2019] [Indexed: 01/03/2023]
Abstract
Antioxidant nutraceuticals functional characteristic science is a challenging field for combining sensitivity and comprehensiveness. A untargeted screening and quantification method based on ultra-high performance liquid chromatography coupled to Quadrupole-Orbitrap high resolution mass spectrometry has been developed for determination of multiple classes of flavonoids in eight-three nutraceuticals samples. The data acquisition is based on a non-target approach of sequential full scan and variable data independent acquisition of twenty consecutive fragmentation events. The flavonoids include flavanols, flavones, flavanones, anthocyanidins, flavonols and isoflavones. A processing strategy is introduced to implementing filtering methods based on data feature extraction, common ion selection, shoulder peak removal, response threshold adjustment, mass shift and characteristic structural fragments evaluation. Confirmation is based on both accurate mass and isotopic assignment of standards, and further quantification is achieved by fragmentation. This scheme allows in depth characterization of flavonoids with the entire fragments.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China; Chinese Academy of Inspection and Quarantine, Beijing, 100123, China.
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Feng Zhang
- Chinese Academy of Inspection and Quarantine, Beijing, 100123, China.
| | - James Chang
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, CA, United States.
| | - Xiaogang Chu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China; Chinese Academy of Inspection and Quarantine, Beijing, 100123, China.
| |
Collapse
|
16
|
Wickham P, Singh L, Pandey P, Lesmeister S, Gilbert P, Kwong M, Caudill J, O’Brien J, Biswas S, Teh S. Development of extraction and detection method for fluridone in water and sediment by HPLC-UV. AMB Express 2019; 9:90. [PMID: 31227931 PMCID: PMC6588664 DOI: 10.1186/s13568-019-0807-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 06/06/2019] [Indexed: 11/13/2022] Open
Abstract
Fluridone is widely used as a herbicide for controlling invasive aquatic plants such as hydrilla in surface water bodies. When applied on surface waters fluridone can attach to bed sediment, requiring rigorous extraction methods prior to analysis. Currently, very limited information exists in terms of fluridone residue detection in delta sediment. In this study, we researched fluridone detection in both water and sediment. To extract fluridone from sediment, here we have tested two extraction methods: (1) a rotavapor method (RM); and (2) a quick, easy, cheap, effective, rugged and safe (QuEChERS) method (QM). The extraction results of RM were compared with those of QM. To quantify fluridone concentrations in extracts, a high-performance liquid chromatography (HPLC)-UV detector was used. HPLC separation was achieved using an Allure C18 5 µm 150 × 4.6 mm column with a mobile phase composed of acetonitrile and water (60:40, v/v). The UV detector was operated at 237 nm. The method was tested and validated using a series of water and sediment samples taken from Sacramento–San Joaquin Delta in California. The average recovery of fluridone was 73% and 78% using RM and QM respectively. The proposed method can be used for testing fluridone in water and sediment samples.
Collapse
|
17
|
Gadelha JR, Rocha AC, Camacho C, Eljarrat E, Peris A, Aminot Y, Readman JW, Boti V, Nannou C, Kapsi M, Albanis T, Rocha F, Machado A, Bordalo A, Valente LMP, Nunes ML, Marques A, Almeida CMR. Persistent and emerging pollutants assessment on aquaculture oysters (Crassostrea gigas) from NW Portuguese coast (Ria De Aveiro). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:731-742. [PMID: 30812007 DOI: 10.1016/j.scitotenv.2019.02.280] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/16/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
The study aim was to determine a range of relevant persistent and emerging pollutants in oysters produced in an aquaculture facility located in an important production area, to assure their safety for human consumption. Pollutants, including 16 PAHs, 3 butyltins (BTs), 29 flame retardants (FRs, including organophosphate and halogenated FRs), 35 pesticides (including 9 pyrethroid insecticides) and 13 personal care products (PCPs, including musks and UV filters), were determined in oysters' tissues collected during one year in four seasonal sampling surveys. The seasonal environmental pollution on the production site was evaluated by water and sediment analysis. Furthermore, oysters' nutritional quality was also assessed and related with the consumption of healthy seafood, showing that oysters are a rich source of protein with low fat content and with a high quality index all year around. Results showed that most analysed pollutants were not detected either in oyster tissues or in environmental matrixes (water and sediments). The few pollutants detected in oyster tissues, including both regulated and non-legislated pollutants, such as a few PAHs (fluorene, phenanthrene, anthracene, fluoranthene, pyrene and indenopyrene), FRs (TPPO, TDCPP, DCP, BDE-47, BDE-209 and Dec 602) and PCPs (galaxolide, galaxolidone, homosalate and octocrylene), were present at low levels (in the ng/g dw range) and did not represent a significant health risk to humans. The observed seasonal variations related to human activities (e.g. tourism in summer) highlights the need for environmental protection and sustainable resource exploration for safe seafood production.
Collapse
Affiliation(s)
- Juliana R Gadelha
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - A Cristina Rocha
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; MARE-UC, Incubadora de Empresas da Figueira da Foz, Parque Industrial e Empresarial da Figueira da Foz (Laboratório MAREFOZ), Rua das Acácias Lote 40A, 3090-380 Figueira da Foz, Portugal
| | - Carolina Camacho
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; Division of Aquaculture, Seafood Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal
| | - Ethel Eljarrat
- Institute of Environmental Assessment and Water Research, Department of Environmental Chemistry (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain
| | - Andrea Peris
- Institute of Environmental Assessment and Water Research, Department of Environmental Chemistry (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain
| | - Yann Aminot
- Biogeochemistry Research Centre, Plymouth University, Plymouth, United Kingdom
| | - James W Readman
- Biogeochemistry Research Centre, Plymouth University, Plymouth, United Kingdom
| | - Vasiliki Boti
- Laboratory of Analytical Chemistry, Chemistry Department, University of Ioannina, Panepistimioupolis, Ioannina GR 45110, Greece
| | - Christina Nannou
- Laboratory of Analytical Chemistry, Chemistry Department, University of Ioannina, Panepistimioupolis, Ioannina GR 45110, Greece
| | - Margarita Kapsi
- Laboratory of Analytical Chemistry, Chemistry Department, University of Ioannina, Panepistimioupolis, Ioannina GR 45110, Greece
| | - Triantafyllos Albanis
- Laboratory of Analytical Chemistry, Chemistry Department, University of Ioannina, Panepistimioupolis, Ioannina GR 45110, Greece
| | - Filipa Rocha
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Ana Machado
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Adriano Bordalo
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; Institute of Biomedical Sciences (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Luísa M P Valente
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; Institute of Biomedical Sciences (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Maria Leonor Nunes
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; Division of Aquaculture, Seafood Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal
| | - António Marques
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; Division of Aquaculture, Seafood Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal
| | - C Marisa R Almeida
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
18
|
Perestrelo R, Silva P, Porto-Figueira P, Pereira JAM, Silva C, Medina S, Câmara JS. QuEChERS - Fundamentals, relevant improvements, applications and future trends. Anal Chim Acta 2019; 1070:1-28. [PMID: 31103162 DOI: 10.1016/j.aca.2019.02.036] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/16/2019] [Accepted: 02/24/2019] [Indexed: 12/15/2022]
Abstract
The Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) method is a simple and straightforward extraction technique involving an initial partitioning followed by an extract clean-up using dispersive solid-phase extraction (d-SPE). Originally, the QuEChERS approach was developed for recovering pesticide residues from fruits and vegetables, but rapidly gained popularity in the comprehensive isolation of analytes from different matrices. According to PubMed, since its development in 2003 up to November 2018, about 1360 papers have been published reporting QuEChERS as extraction method. Several papers have reported different improvements and modifications to the original QuEChERS protocol to ensure more efficient extractions of pH-dependent analytes and to minimize the degradation of labile analytes. This analytical approach shows several advantages over traditional extraction techniques, requiring low sample and solvent volumes, as well as less time for sample preparation. Furthermore, most of the published studies show that the QuEChERS protocol provides higher recovery rate and a better analytical performance than conventional extraction procedures. This review proposes an updated overview of the most recent developments and applications of QuEChERS beyond its original application to pesticides, mycotoxins, veterinary drugs and pharmaceuticals, forensic analysis, drugs of abuse and environmental contaminants. Their pros and cons will be discussed, considering the factors influencing the extraction efficiency. Whenever possible, the performance of the QuEChERS is compared to other extraction approaches. In addition to the evolution of this technique, changes and improvements to the original method are discussed.
Collapse
Affiliation(s)
- Rosa Perestrelo
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal.
| | - Pedro Silva
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Priscilla Porto-Figueira
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Jorge A M Pereira
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Catarina Silva
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Sonia Medina
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - José S Câmara
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal; Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| |
Collapse
|
19
|
A modified QuEChERS approach for the analysis of pharmaceuticals in sediments by LC-Orbitrap HRMS. Anal Bioanal Chem 2019; 411:1383-1396. [DOI: 10.1007/s00216-018-01570-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/18/2018] [Accepted: 12/27/2018] [Indexed: 11/30/2022]
|
20
|
Zhao P, Wang Z, Li K, Guo X, Zhao L. Multi-residue enantiomeric analysis of 18 chiral pesticides in water, soil and river sediment using magnetic solid-phase extraction based on amino modified multiwalled carbon nanotubes and chiral liquid chromatography coupled with tandem mass spectrometry. J Chromatogr A 2018; 1568:8-21. [PMID: 30007792 DOI: 10.1016/j.chroma.2018.07.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/15/2018] [Accepted: 07/04/2018] [Indexed: 02/06/2023]
Abstract
This manuscript describes, for the first time, the multi-residue analysis of 18 chiral pesticides at enantiomeric levels in both environmental liquid (river water, influent and effluent wastewater) and solid matrices (agricultural soil, forestal soil and river sediment) based on magnetic solid-phase extraction (MSPE) and chiral liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Magnetic amino modified multiwalled carbon nanotubes (m-MWCNTs-NH2) were prepared and firstly applied to adsorb pesticides from complex matrices. Response surface methodology (RSM) was applied to assist the multivariable optimization. The simultaneous enantioseparation of the chiral pesticides was performed on a Chiralpak IG column. Under the optimum conditions, the mean recoveries for pesticides enantiomers from the water matrices ranged from 81.1 to 106.3% with intra-day RSD of 2.1-11.9% and inter-day RSD of 2.6-12.7%; the mean recoveries for all enantiomers from the solid matrices ranged from 80.3 to 105.9% with intra-day RSD of 2.3-10.9% and inter-day RSD of 4.0-13.4%. Good linearity was achieved for all enantiomers with determination coefficients (r2) greater than 0.9912. Method quantification limits were below 2.04ng L-1 in liquid matrices and below 0.50ng g-1 in solid matrices. The developed method offered some advantages, such as simple operation, rapidity and high concentration factor. Therefore, it is suitable for monitoring the enantiomeric compositions of chiral pesticides in different environmental matrices.
Collapse
Affiliation(s)
- Pengfei Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, 110016, Shenyang, Liaoning Province, PR China
| | - Zhaokun Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, 110016, Shenyang, Liaoning Province, PR China
| | - Kunjie Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, 110016, Shenyang, Liaoning Province, PR China
| | - Xingjie Guo
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, 110016, Shenyang, Liaoning Province, PR China.
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, 110016, Shenyang, Liaoning Province, PR China.
| |
Collapse
|
21
|
Shi L, Gui T, Zhao S, Xu J, Wang F, Sui C, Zhang Y, Hu D. Degradation and residues of indoxacarb enantiomers in rice plants, rice hulls and brown rice using enriched S-
indoxacarb formulation and enantiopure formulation. Biomed Chromatogr 2018; 32:e4301. [DOI: 10.1002/bmc.4301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/17/2018] [Accepted: 05/23/2018] [Indexed: 01/28/2023]
Affiliation(s)
- Lihong Shi
- Guizhou University; State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Guiyang People's Republic of China
| | - Ting Gui
- Guizhou University; State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Guiyang People's Republic of China
| | - Shan Zhao
- Guizhou University; State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Guiyang People's Republic of China
| | - Jin Xu
- Guizhou University; State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Guiyang People's Republic of China
| | - Fei Wang
- Guizhou University; State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Guiyang People's Republic of China
| | - Changling Sui
- Guizhou University; State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Guiyang People's Republic of China
| | - Yuping Zhang
- Guizhou University; State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Guiyang People's Republic of China
| | - Deyu Hu
- Guizhou University; State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Guiyang People's Republic of China
| |
Collapse
|