1
|
Li C, Tang M. The toxicological effects of nano titanium dioxide on target organs and mechanisms of toxicity. J Appl Toxicol 2024; 44:152-164. [PMID: 37655586 DOI: 10.1002/jat.4534] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/04/2023] [Accepted: 08/13/2023] [Indexed: 09/02/2023]
Abstract
Nano-titanium dioxide (TiO2 NPs) is widely used for its extremely high stability, corrosion resistance, and photocatalytic properties and has penetrated into various fields of production and life. Assessing its toxicity to different organs should be a key part of preclinical toxicity assessment of TiO2 NPs, which is relatively incomprehensive yet. Therefore, this review focuses on the toxic effects of TiO2 NPs on various organs in mammals and biological mechanisms from different organs. The commonality of toxic effects on various target organs reflected in tissue structure damage and dysfunction, such as liver damage and dysfunction; pulmonary fibrosis; and renal impairment (including hematuria and nephritis); damage of brain tissue and neurons; alteration of intestinal villi; and weight loss. And effects on the reproductive system are affected by different sexes, including ovarian dysfunction, testicular development damage, and sperm viability reduction. We believe that the toxic mechanisms of TiO2 NPs in target organs have commonalities, such as oxidative stress, inflammatory responses, and organelle damage. However, different target organ toxicities also have their specificities. TiO2 NPs disturb the intestinal flora and cause undesirable changes in feces products. And in spleen are infiltration of neutrophils and lymphadenopathy and eventually immune deficiency. Although the toxic pathways are different, but there may be a close link between the different toxic pathways. In this article, the main manifestations of the toxic effects of titanium dioxide nanoparticles on major mammalian organs are reviewed, in order to provide basic data for their better application from a medical perspective.
Collapse
Affiliation(s)
- Congcong Li
- Key Laboratory of Environmental Medicine of Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine of Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
2
|
Grasso A, Ferrante M, Zuccarello P, Filippini T, Arena G, Fiore M, Cristaldi A, Conti GO, Copat C. Chemical Characterization and Quantification of Titanium Dioxide Nanoparticles (TiO 2-NPs) in Seafood by Single-Particle ICP-MS: Assessment of Dietary Exposure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17249547. [PMID: 33419346 PMCID: PMC7766088 DOI: 10.3390/ijerph17249547] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/30/2022]
Abstract
The significant increase in the production and variety of nanoparticles (NPs) has led to their release into the environment, especially into the marine environment. Titanium dioxide nanoparticles (TiO2-NPs) are used in different industrial sectors, from the food industry to several consumer and household products. Since the aquatic environment is highly sensitive to contamination by TiO2-NPs, this work aimed to give a preliminary assessment of the contamination of packaged seafood, where the food additive TiO2 (E171) is not to be intentionally added. This allowed providing a chemical characterization and quantification of TiO2-NPs in processed canned fish products belonging to different trophic positions of the pelagic compartment and in canned clam. The new emerging technique called single-particle inductively coupled plasma mass spectrometry (spICP-MS) was applied, which allows the determination of nanoparticle number-based concentration, as well as the dissolved titanium. This study highlights how processed food, where the pigment E171 was not intentionally added, contains TiO2 in its nanoparticle form, as well as dissolved titanium. Processed clam represented the seafood with the highest content of TiO2-NPs. In pelagic fish species, we found progressively higher levels and smaller sizes of TiO2-NPs from smaller to larger fish. Our results highlight the importance of planning the characterization and quantification of TiO2-NPs in food both processed and not, as well as where the pigment E171 is intentionally added and not, as it is not the only source of TiO2-NPs. This result represents a solid step toward being able to estimate the real level of dietary exposure to TiO2-NPs for the general population and the related health risks.
Collapse
Affiliation(s)
- Alfina Grasso
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy; (A.G.); (P.Z.); (G.A.); (M.F.); (A.C.); (G.O.C.); (C.C.)
| | - Margherita Ferrante
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy; (A.G.); (P.Z.); (G.A.); (M.F.); (A.C.); (G.O.C.); (C.C.)
- Correspondence:
| | - Pietro Zuccarello
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy; (A.G.); (P.Z.); (G.A.); (M.F.); (A.C.); (G.O.C.); (C.C.)
| | - Tommaso Filippini
- Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy;
| | - Giovanni Arena
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy; (A.G.); (P.Z.); (G.A.); (M.F.); (A.C.); (G.O.C.); (C.C.)
| | - Maria Fiore
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy; (A.G.); (P.Z.); (G.A.); (M.F.); (A.C.); (G.O.C.); (C.C.)
| | - Antonio Cristaldi
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy; (A.G.); (P.Z.); (G.A.); (M.F.); (A.C.); (G.O.C.); (C.C.)
| | - Gea Oliveri Conti
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy; (A.G.); (P.Z.); (G.A.); (M.F.); (A.C.); (G.O.C.); (C.C.)
| | - Chiara Copat
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy; (A.G.); (P.Z.); (G.A.); (M.F.); (A.C.); (G.O.C.); (C.C.)
| |
Collapse
|
3
|
Ojeda D, Taboada-López MV, Bolea E, Pérez-Arantegui J, Bermejo-Barrera P, Moreda-Piñeiro A, Laborda F. Size characterization and quantification of titanium dioxide nano- and microparticles-based products by Asymmetrical Flow Field-Flow Fractionation coupled to Dynamic Light Scattering and Inductively Coupled Plasma Mass Spectrometry. Anal Chim Acta 2020; 1122:20-30. [DOI: 10.1016/j.aca.2020.04.080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 10/24/2022]
|
4
|
Kosmulski M. The pH dependent surface charging and points of zero charge. VIII. Update. Adv Colloid Interface Sci 2020; 275:102064. [PMID: 31757389 DOI: 10.1016/j.cis.2019.102064] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/28/2022]
Abstract
A critical review of the points of zero charge (PZC) obtained by potentiometric titration and of isoelectric points (IEP) obtained by electrokinetic measurements. The results from the recent literature are presented with experimental details (temperature, method, type of apparatus, etc.), and they are compared with the zero points of similar materials reported in older publications. Most studies of PZC and IEP reported in the recent papers were carried out for metal oxides and hydroxides, especially alumina, iron oxides, and titania, and the results are consistent with the PZC and IEP of similar materials reported in older literature, and summarized in previous reviews by the same author. Relatively few studies were carried out with less common materials, and IEP of (nominally) VO2 and BN have been reported for the 1st time.
Collapse
|