1
|
Azevedo A, Coelho MP, Pinho JO, Soares PIP, Reis CP, Borges JP, Gaspar MM. An alternative hybrid lipid nanosystem combining cytotoxic and magnetic properties as a tool to potentiate antitumor effect of 5-fluorouracil. Life Sci 2024; 344:122558. [PMID: 38471621 DOI: 10.1016/j.lfs.2024.122558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
AIMS Colorectal cancer is the third most frequent type of cancer and the second leading cause of cancer-related deaths worldwide. The majority of cases are diagnosed at a later stage, leading to the need for more aggressive treatments such as chemotherapy. 5-Fluorouracil (5-FU), known for its high cytotoxic properties has emerged as a chemotherapeutic agent. However, it presents several drawbacks such as lack of specificity and short half-life. To reduce these drawbacks, several strategies have been designed namely chemical modification or association to drug delivery systems. MATERIALS AND METHODS Current research was focused on the design, physicochemical characterization and in vitro evaluation of a lipid-based system loaded with 5-FU. Furthermore, aiming to maximize preferential targeting and release at tumour sites, a hybrid lipid-based system, combining both therapeutic and magnetic properties was developed and validated. For this purpose, liposomes co-loaded with 5-FU and iron oxide (II, III) nanoparticles were accomplished. KEY FINDINGS The characterization of the developed nanoformulation was performed in terms of incorporation parameters, mean size and surface charge. In vitro studies assessed in a murine colon cancer cell line confirmed that 5-FU antiproliferative activity was preserved after incorporation in liposomes. In same model, iron oxide (II, III) nanoparticles did not exhibit cytotoxic properties. Additionally, the presence of these nanoparticles was shown to confer magnetic properties to the liposomes, allowing them to respond to external magnetic fields. SIGNIFICANCE Overall, a lipid nanosystem loading a chemotherapeutic agent displaying magnetic characteristics was successfully designed and physicochemically characterized, for further in vivo applications.
Collapse
Affiliation(s)
- Afonso Azevedo
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Mariana P Coelho
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Jacinta O Pinho
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Paula I P Soares
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Catarina P Reis
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal; IBEB, Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, Universidade de Lisboa, Lisboa, Portugal
| | - João P Borges
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal
| | - M Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal; IBEB, Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
2
|
Nowak-Jary J, Machnicka B. In vivo Biodistribution and Clearance of Magnetic Iron Oxide Nanoparticles for Medical Applications. Int J Nanomedicine 2023; 18:4067-4100. [PMID: 37525695 PMCID: PMC10387276 DOI: 10.2147/ijn.s415063] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/29/2023] [Indexed: 08/02/2023] Open
Abstract
Magnetic iron oxide nanoparticles (magnetite and maghemite) are intensively studied due to their broad potential applications in medical and biological sciences. Their unique properties, such as nanometric size, large specific surface area, and superparamagnetism, allow them to be used in targeted drug delivery and internal radiotherapy by targeting an external magnetic field. In addition, they are successfully used in magnetic resonance imaging (MRI), hyperthermia, and radiolabelling. The appropriate design of nanoparticles allows them to be delivered to the desired tissues and organs. The desired biodistribution of nanoparticles, eg, cancerous tumors, is increased using an external magnetic field. Thus, knowledge of the biodistribution of these nanoparticles is essential for medical applications. It allows for determining whether nanoparticles are captured by the desired organs or accumulated in other tissues, which may lead to potential toxicity. This review article presents the main organs where nanoparticles accumulate. The sites of their first uptake are usually the liver, spleen, and lymph nodes, but with the appropriate design of nanoparticles, they can also be accumulated in organs such as the lungs, heart, or brain. In addition, the review describes the factors affecting the biodistribution of nanoparticles, including their size, shape, surface charge, coating molecules, and route of administration. Modern techniques for determining nanoparticle accumulation sites and concentration in isolated tissues or the body in vivo are also presented.
Collapse
Affiliation(s)
- Julia Nowak-Jary
- University of Zielona Gora, Faculty of Biological Sciences, Department of Biotechnology, Zielona Gora, 65-516, Poland
| | - Beata Machnicka
- University of Zielona Gora, Faculty of Biological Sciences, Department of Biotechnology, Zielona Gora, 65-516, Poland
| |
Collapse
|
3
|
Remmo A, Wiekhorst F, Kosch O, Lyer S, Unterweger H, Kratz H, Löwa N. Determining the resolution of a tracer for magnetic particle imaging by means of magnetic particle spectroscopy. RSC Adv 2023; 13:15730-15736. [PMID: 37235104 PMCID: PMC10208046 DOI: 10.1039/d3ra01394d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Magnetic particle imaging (MPI) is an imaging modality to quantitatively determine the three-dimensional distribution of magnetic nanoparticles (MNPs) administered as a tracer into a biological system. Magnetic particle spectroscopy (MPS) is the zero-dimensional MPI counterpart without spatial coding but with much higher sensitivity. Generally, MPS is employed to qualitatively evaluate the MPI capability of tracer systems from the measured specific harmonic spectra. Here, we investigated the correlation of three characteristic MPS parameters with the achievable MPI resolution from a recently introduced procedure based on a two-voxel-analysis of data taken from the system function acquisition that is mandatory in Lissajous scanning MPI. We evaluated nine different tracer systems and determined their MPI capability and resolution from MPS measurements and compared the results with MPI phantom measurements.
Collapse
Affiliation(s)
- Amani Remmo
- Physikalisch-Technische Bundesanstalt Berlin, Metrology for Magnetic Nanoparticles Abbestr. 2-12 10587 Berlin Germany
| | - Frank Wiekhorst
- Physikalisch-Technische Bundesanstalt Berlin, Metrology for Magnetic Nanoparticles Abbestr. 2-12 10587 Berlin Germany
| | - Olaf Kosch
- Physikalisch-Technische Bundesanstalt Berlin, Metrology for Magnetic Nanoparticles Abbestr. 2-12 10587 Berlin Germany
| | - Stefan Lyer
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Professorship for AI-Controlled Nanomaterials, Universitätsklinikum Erlangen Erlangen Germany
| | - Harald Unterweger
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Professorship for AI-Controlled Nanomaterials, Universitätsklinikum Erlangen Erlangen Germany
| | - Harald Kratz
- Charité-Universitätsmedizin Berlin, Clinic for Radiology Charitéplatz 1 10117 Berlin Germany
| | - Norbert Löwa
- Physikalisch-Technische Bundesanstalt Berlin, Metrology for Magnetic Nanoparticles Abbestr. 2-12 10587 Berlin Germany
| |
Collapse
|
4
|
Idris AH, Che Abdullah CA, Yusof NA, Asmawi AA, Abdul Rahman MB. Nanostructured Lipid Carrier Co-Loaded with Docetaxel and Magnetic Nanoparticles: Physicochemical Characterization and In Vitro Evaluation. Pharmaceutics 2023; 15:pharmaceutics15051319. [PMID: 37242561 DOI: 10.3390/pharmaceutics15051319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Lung cancer is currently the most prevalent cause of cancer mortality due to late diagnosis and lack of curative therapies. Docetaxel (Dtx) is clinically proven as effective, but poor aqueous solubility and non-selective cytotoxicity limit its therapeutic efficacy. In this work, a nanostructured lipid carrier (NLC) loaded with iron oxide nanoparticles (IONP) and Dtx (Dtx-MNLC) was developed as a potential theranostic agent for lung cancer treatment. The amount of IONP and Dtx loaded into the Dtx-MNLC was quantified using Inductively Coupled Plasma Optical Emission Spectroscopy and high-performance liquid chromatography. Dtx-MNLC was then subjected to an assessment of physicochemical characteristics, in vitro drug release, and cytotoxicity. Dtx loading percentage was determined at 3.98% w/w, and 0.36 mg/mL IONP was loaded into the Dtx-MNLC. The formulation showed a biphasic drug release in a simulated cancer cell microenvironment, where 40% of Dtx was released for the first 6 h, and 80% cumulative release was achieved after 48 h. Dtx-MNLC exhibited higher cytotoxicity to A549 cells than MRC5 in a dose-dependent manner. Furthermore, the toxicity of Dtx-MNLC to MRC5 was lower than the commercial formulation. In conclusion, Dtx-MNLC shows the efficacy to inhibit lung cancer cell growth, yet it reduced toxicity on healthy lung cells and is potentially capable as a theranostic agent for lung cancer treatment.
Collapse
Affiliation(s)
- Auni Hamimi Idris
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Lebuh Persiaran Tun Khalil Yaakob, Kuantan 26300, Pahang, Malaysia
| | - Che Azurahanim Che Abdullah
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nor Azah Yusof
- Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Azren Aida Asmawi
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohd Basyaruddin Abdul Rahman
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
5
|
Lavorato GC, de Almeida AA, Vericat C, Fonticelli MH. Redox phase transformations in magnetite nanoparticles: impact on their composition, structure and biomedical applications. NANOTECHNOLOGY 2023; 34:192001. [PMID: 36825776 DOI: 10.1088/1361-6528/acb943] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Magnetite nanoparticles (NPs) are one of the most investigated nanomaterials so far and modern synthesis methods currently provide an exceptional control of their size, shape, crystallinity and surface functionalization. These advances have enabled their use in different fields ranging from environmental applications to biomedicine. However, several studies have shown that the precise composition and crystal structure of magnetite NPs depend on their redox phase transformations, which have a profound impact on their physicochemical properties and, ultimately, on their technological applications. Although the physical mechanisms behind such chemical transformations in bulk materials have been known for a long time, experiments on NPs with large surface-to-volume ratios have revealed intriguing results. This article is focused on reviewing the current status of the field. Following an introduction on the fundamental properties of magnetite and other related iron oxides (including maghemite and wüstite), some basic concepts on the chemical routes to prepare iron oxide nanomaterials are presented. The key experimental techniques available to study phase transformations in iron oxides, their advantages and drawbacks to the study of nanomaterials are then discussed. The major section of this work is devoted to the topotactic oxidation of magnetite NPs and, in this regard, the cation diffusion model that accounts for the experimental results on the kinetics of the process is critically examined. Since many synthesis routes rely on the formation of monodisperse magnetite NPs via oxidation of wüstite counterparts, the modulation of their physical properties by crystal defects arising from the oxidation process is also described. Finally, the importance of a precise control of the composition and structure of magnetite-based NPs is discussed and its role in their biomedical applications is highlighted.
Collapse
Affiliation(s)
- Gabriel C Lavorato
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C. C. 16, Suc. 4, 1900 La Plata, Argentina
| | - Adriele A de Almeida
- Instituto de Física 'Gleb Wataghin' (IFGW), Universidade Estadual de Campinas-UNICAMP, R. Sérgio Buarque de Holanda, 777-CEP: 13083-859, Campinas - SP, Brazil
| | - Carolina Vericat
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C. C. 16, Suc. 4, 1900 La Plata, Argentina
| | - Mariano H Fonticelli
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C. C. 16, Suc. 4, 1900 La Plata, Argentina
| |
Collapse
|
6
|
Bassiony H, El-Ghor AA, Salaheldin TA, Sabet S, Mohamed MM. Tissue Distribution, Histopathological and Genotoxic Effects of Magnetite Nanoparticles on Ehrlich Solid Carcinoma. Biol Trace Elem Res 2022; 200:5145-5158. [PMID: 35032291 PMCID: PMC9560945 DOI: 10.1007/s12011-022-03102-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/02/2022] [Indexed: 11/26/2022]
Abstract
Nanoparticles can potentially cause adverse effects on cellular and molecular level. The present study aimed to investigate the histopathological changes and DNA damage effects of magnetite nanoparticles (MNPs) on female albino mice model with Ehrlich solid carcinoma (ESC). Magnetite nanoparticles coated with L-ascorbic acid (size ~ 25.0 nm) were synthesized and characterized. Mice were treated with MNPs day by day, intraperitoneally (IP), intramuscularly (IM), or intratumorally (IT). Autopsy samples were taken from the solid tumor, thigh muscle, liver, kidney, lung, spleen, and brain for assessment of iron content, histopathological examination, and genotoxicity using comet assay. The liver, spleen, lung, and heart had significantly higher iron content in groups treated IP. On the other hand, tumor, muscles, and the liver had significantly higher iron content in groups treated IT. MNPs induced a significant DNA damage in IT treated ESC. While a significant DNA damage was detected in the liver of the IP treated group, but no significant DNA damage could be detected in the brain. Histopathological findings in ESC revealed a marked tumor necrosis, 50% in group injected IT but 40% in group injected IP and 20% only in untreated tumors. Other findings include inflammatory cell infiltration, dilatation, and congestion of blood vessels of different organs of treated groups in addition to appearance of metastatic cancer cells in the liver of non-treated tumor group. MNPs could have an antitumor effect but it is recommended to be injected intratumorally to be directed to the tumor tissues and reduce its adverse effects on healthy tissues.
Collapse
Affiliation(s)
- Heba Bassiony
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613 Egypt
| | - Akmal A. El-Ghor
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613 Egypt
| | - Taher A. Salaheldin
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY USA
| | - Salwa Sabet
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613 Egypt
| | - Mona M. Mohamed
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613 Egypt
- Director of Biotechnology Program, Faculty of Science, Galala University, Suez, 43511 Egypt
| |
Collapse
|
7
|
Vasicek TW, Guillermo S, Swofford DR, Durchman J, Jenkins SV. β-Glucosidase Immobilized on Magnetic Nanoparticles: Controlling Biomolecule Footprint and Particle Functional Group Density to Navigate the Activity-Stability Tradeoff. ACS APPLIED BIO MATERIALS 2022; 5:5347-5355. [PMID: 36331934 DOI: 10.1021/acsabm.2c00735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the present work, the immobilized footprint of β-glucosidase (BGL) on silica-coated iron oxide was explored to produce reusable catalysts with flexible active sites for high activity and heightened storage stability. Synthesized iron oxide particles were coated with silica and functionalized with various densities of (3-aminopropyl)triethoxysilane (APTES) to obtain particles with amine densities ranging from 0 to 3 × 10-5 mol/g particle. The amine-modified particles were activated with glutaraldehyde, and subsequently, BGL was immobilized using either a 0.1 or 1 mg/mL enzyme solution to produce biomolecules with a large or small footprint on the particle surface. The initial activity, activity for subsequent hydrolysis cycles, activity after extended storage, and biomolecule footprint were studied as a function of APTES density and concentration of enzyme used for immobilization. At high immobilization amounts, the specific activity and footprint were reduced, but the immobilized biomolecules were stable during storage. However, at low enzyme immobilizations, the activity of the enzymes was retained, the immobilized enzymes adopted large footprints, and the storage stability increased with APTES density relative to the free enzyme. These results highlight how controlling both the protein load and functional group density can yield immobilized enzymes possessing high activity, which are stable during storage.
Collapse
Affiliation(s)
- Thaddeus W Vasicek
- Department of Chemistry, The Citadel, Charleston, South Carolina29409, United States
| | - Sylvester Guillermo
- Department of Chemistry, The Citadel, Charleston, South Carolina29409, United States
| | - Danny R Swofford
- Department of Chemistry, The Citadel, Charleston, South Carolina29409, United States
| | - Jeremy Durchman
- Department of Physical Science, University of Arkansas Fort Smith, Fort Smith, Arkansas72913, United States
| | - Samir V Jenkins
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas72205, United States
| |
Collapse
|
8
|
Detection of magnetic iron nanoparticles by single-particle ICP-TOFMS: case study for a magnetic filtration medical device. Anal Bioanal Chem 2022; 414:6743-6751. [PMID: 35864268 DOI: 10.1007/s00216-022-04234-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/13/2022] [Accepted: 07/15/2022] [Indexed: 11/01/2022]
Abstract
Nanoparticles are increasingly used in medical products and devices. Their properties are critical for such applications, as particle characteristics determine their interaction with the biological system, and, therefore, the performance and safety of the final product. Among the most important nanoparticle characteristics and parameters are particle mass distribution, composition, total particle mass, and number concentration. In this study, we utilize single-particle inductively coupled plasma time-of-flight mass spectrometry (spICP-TOFMS) for the characterization of inorganic nanoparticles in complex biological fluids. We report online microdroplet calibration for reference-nanomaterial-free and matrix-matched calibration of carbon-coated iron carbide nanoparticles (C/Fe3C NPs). As a case study, we analyze C/Fe3C NPs designed for targeted blood purification. Through the analysis of NP mass distributions, we study the effect of the NP surface modification on aggregation of C/Fe3C NPs in whole blood. We also demonstrate the efficiency of removal of coated C/Fe3C NP from saline by magnetically enhanced filters. Magnetic filtering is shown to reduce the mass concentration of detectable C/Fe3C NPs by 99.99 ± 0.01% in water.
Collapse
|
9
|
Nowak-Jary J, Machnicka B. Pharmacokinetics of magnetic iron oxide nanoparticles for medical applications. J Nanobiotechnology 2022; 20:305. [PMID: 35761279 PMCID: PMC9235206 DOI: 10.1186/s12951-022-01510-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/07/2022] [Indexed: 12/05/2022] Open
Abstract
Magnetic iron oxide nanoparticles (MNPs) have been under intense investigation for at least the last five decades as they show enormous potential for many biomedical applications, such as biomolecule separation, MRI imaging and hyperthermia. Moreover, a large area of research on these nanostructures is concerned with their use as carriers of drugs, nucleic acids, peptides and other biologically active compounds, often leading to the development of targeted therapies. The uniqueness of MNPs is due to their nanometric size and unique magnetic properties. In addition, iron ions, which, along with oxygen, are a part of the MNPs, belong to the trace elements in the body. Therefore, after digesting MNPs in lysosomes, iron ions are incorporated into the natural circulation of this element in the body, which reduces the risk of excessive storage of nanoparticles. Still, one of the key issues for the therapeutic applications of magnetic nanoparticles is their pharmacokinetics which is reflected in the circulation time of MNPs in the bloodstream. These characteristics depend on many factors, such as the size and charge of MNPs, the nature of the polymers and any molecules attached to their surface, and other. Since the pharmacokinetics depends on the resultant of the physicochemical properties of nanoparticles, research should be carried out individually for all the nanostructures designed. Almost every year there are new reports on the results of studies on the pharmacokinetics of specific magnetic nanoparticles, thus it is very important to follow the achievements on this matter. This paper reviews the latest findings in this field. The mechanism of action of the mononuclear phagocytic system and the half-lives of a wide range of nanostructures are presented. Moreover, factors affecting clearance such as hydrodynamic and core size, core morphology and coatings molecules, surface charge and technical aspects have been described.
Collapse
Affiliation(s)
- Julia Nowak-Jary
- Department of Biotechnology, Institute of Biological Sciences, University of Zielona Gora, Prof. Z. Szafrana 1, 65-516, Zielona Gora, Poland.
| | - Beata Machnicka
- Department of Biotechnology, Institute of Biological Sciences, University of Zielona Gora, Prof. Z. Szafrana 1, 65-516, Zielona Gora, Poland
| |
Collapse
|
10
|
Geißler D, Nirmalananthan-Budau N, Scholtz L, Tavernaro I, Resch-Genger U. Analyzing the surface of functional nanomaterials-how to quantify the total and derivatizable number of functional groups and ligands. Mikrochim Acta 2021; 188:321. [PMID: 34482449 PMCID: PMC8418596 DOI: 10.1007/s00604-021-04960-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/08/2021] [Indexed: 12/04/2022]
Abstract
Functional nanomaterials (NM) of different size, shape, chemical composition, and surface chemistry are of increasing relevance for many key technologies of the twenty-first century. This includes polymer and silica or silica-coated nanoparticles (NP) with covalently bound surface groups, semiconductor quantum dots (QD), metal and metal oxide NP, and lanthanide-based NP with coordinatively or electrostatically bound ligands, as well as surface-coated nanostructures like micellar encapsulated NP. The surface chemistry can significantly affect the physicochemical properties of NM, their charge, their processability and performance, as well as their impact on human health and the environment. Thus, analytical methods for the characterization of NM surface chemistry regarding chemical identification, quantification, and accessibility of functional groups (FG) and surface ligands bearing such FG are of increasing importance for quality control of NM synthesis up to nanosafety. Here, we provide an overview of analytical methods for FG analysis and quantification with special emphasis on bioanalytically relevant FG broadly utilized for the covalent attachment of biomolecules like proteins, peptides, and oligonucleotides and address method- and material-related challenges and limitations. Analytical techniques reviewed include electrochemical titration methods, optical assays, nuclear magnetic resonance and vibrational spectroscopy, as well as X-ray based and thermal analysis methods, covering the last 5-10 years. Criteria for method classification and evaluation include the need for a signal-generating label, provision of either the total or derivatizable number of FG, need for expensive instrumentation, and suitability for process and production control during NM synthesis and functionalization.
Collapse
Affiliation(s)
- Daniel Geißler
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division Biophotonics (BAM-1.2), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Nithiya Nirmalananthan-Budau
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division Biophotonics (BAM-1.2), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Lena Scholtz
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division Biophotonics (BAM-1.2), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Isabella Tavernaro
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division Biophotonics (BAM-1.2), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Ute Resch-Genger
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division Biophotonics (BAM-1.2), Richard-Willstätter-Str. 11, 12489, Berlin, Germany.
| |
Collapse
|
11
|
Ovejero JG, Gallo-Cordova A, Roca AG, Morales MP, Veintemillas-Verdaguer S. Reproducibility and Scalability of Magnetic Nanoheater Synthesis. NANOMATERIALS 2021; 11:nano11082059. [PMID: 34443890 PMCID: PMC8402135 DOI: 10.3390/nano11082059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 01/15/2023]
Abstract
The application of magnetic nanoparticles requires large amounts of materials of reproducible quality. This work explores the scaled-up synthesis of multi-core iron oxide nanoparticles through the use of thermal decomposition in organic media and kilograms of reagents. To this end, we check the effect of extending the high temperature step from minutes to hours. To address the intrinsic variability of the colloidal crystallization nucleation process, the experiments were repeated and analyzed statistically. Due to the simultaneity of the nuclei growth and agglomeration steps, the nanostructure of the samples produced was a combination of single- and multi-core nanoparticles. The main characteristics of the materials obtained, as well as the reaction yields, were analyzed and compared. As a general rule, yield, particle size, and reproducibility increase when the time at high temperature is prolonged. The samples obtained were ranked in terms of the reproducibility of different structural, colloidal, and magnetic features. The capability of the obtained materials to act as nanoheaters in magnetic hyperthermia was assessed, showing a strong dependence on the crystallite size (calculated by X-ray diffraction), reflecting the nanoparticle volume with a coherent magnetization reversal.
Collapse
|
12
|
Rodenak-Kladniew B, Noacco N, Pérez de Berti I, Stewart SJ, Cabrera AF, Alvarez VA, García de Bravo M, Durán N, Castro GR, Islan GA. Design of magnetic hybrid nanostructured lipid carriers containing 1,8-cineole as delivery systems for anticancer drugs: Physicochemical and cytotoxic studies. Colloids Surf B Biointerfaces 2021; 202:111710. [PMID: 33765626 DOI: 10.1016/j.colsurfb.2021.111710] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 02/09/2021] [Accepted: 03/16/2021] [Indexed: 12/18/2022]
Abstract
The development of versatile carriers to deliver chemotherapeutic agents to specific targets with establishing drug release kinetics and minimum undesirable side effects is becoming a promising relevant tool in the medical field. Magnetic hybrid nanostructured lipid carriers (NLC) were prepared by incorporation of 1,8-cineole (CN, a monoterpene with antiproliferative properties) and maghemite nanoparticles (MNPs) into a hybrid matrix composed of myristyl myristate coated with chitosan. Hybrid NLC characterized by DLS and TEM confirmed the presence of positively charged spherical nanoparticles of around 250 nm diameter and +10.2 mV of Z-potential. CN encapsulation into the lipid core was greater than 75 % and effectively released in 24 h. Modification of the crystalline structure of nanoparticles after incorporation of CN and MNPs was observed by XRD, DSC, and TGA analyses. Superparamagnetic NLC behavior was verified by recording the magnetization using a vibrating scanning magnetometer. NLC resulted in more cytotoxic than free CN in HepG2 and A549 cell lines. Particularly, viability inhibition of HepG2 and A549 cells was increased from 35 % to 55 % and from 38 % to 61 %, respectively, when 8 mM CN was incorporated into the lipid NPs at 24 h. Green fluorescent-labeled NLC with DIOC18 showed an enhanced cellular uptake with chitosan-coated NLC. Besides, no cytotoxicity of the formulations in normal WI-38 cells was observed, suggesting that the developed hybrid NLC system is a safe and good potential candidate for the selective delivery and potentiation of anticancer drugs.
Collapse
Affiliation(s)
- B Rodenak-Kladniew
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET-UNLP, CCT-La Plata, Facultad de Ciencias Médicas, La Plata, Argentina
| | - N Noacco
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata), Calle 47 y 115, B1900AJI, La Plata, Buenos Aires, Argentina
| | - I Pérez de Berti
- CINDECA, CONICET-CICPBA-Universidad Nacional de La Plata, Facultad de Ciencias Exactas, Calle 47 N 257, 1900, La Plata, Argentina
| | - S J Stewart
- IFLP-CONICET, Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C. C. 67, 1900, La Plata, Argentina
| | - A F Cabrera
- IFLP-CONICET, Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C. C. 67, 1900, La Plata, Argentina
| | - V A Alvarez
- Grupo de Materiales Compuestos Termoplásticos (CoMP), Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Facultad de Ingeniería, Universidad Nacional de Mar del Plata (UNMdP) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Colón 10850, 7600, Mar del Plata, Argentina
| | - M García de Bravo
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET-UNLP, CCT-La Plata, Facultad de Ciencias Médicas, La Plata, Argentina
| | - N Durán
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Biology Institute, University of Campinas, Campinas, SP, Brazil; Nanomedicine Research Unit (Nanomed), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - G R Castro
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata), Calle 47 y 115, B1900AJI, La Plata, Buenos Aires, Argentina; Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC). Partner Laboratory of the Max Planck Institute for Biophysical Chemistry (MPIbpC, MPG). Centro de Estudios Interdisciplinarios (CEI), Universidad Nacional de Rosario, Maipú 1065, S2000, Rosario, Santa Fe, Argentina
| | - G A Islan
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata), Calle 47 y 115, B1900AJI, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
13
|
Abdolahpur Monikh F, Chupani L, Vijver MG, Peijnenburg WJGM. Parental and trophic transfer of nanoscale plastic debris in an assembled aquatic food chain as a function of particle size. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116066. [PMID: 33290950 DOI: 10.1016/j.envpol.2020.116066] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 05/24/2023]
Abstract
The existing limitations in analytical techniques for characterization and quantification of nanoscale plastic debris (NPD) in organisms hinder understanding of the parental and trophic transfer of NPD in organisms. Herein, we used iron oxide-doped polystyrene (PS) NPD (Fe-PS-NPD) of 270 nm and Europium (Eu)-doped PS-NPD (Eu-PS-NPD) of 640 nm to circumvent these limitations and to evaluate the influence of particle size on the trophic transfer of NPD along an algae-daphnids food chain and on the reproduction of daphnids fed with NPD-exposed algae. We used Fe and Eu as proxies for the Fe-PS-NPD and Eu-Ps-NPD, respectively. The algae cells (Pseudokirchinella subcapitata) were exposed to 4.8 × 1010 particles/L of Fe-PS-NPD or Eu-PS-NPD for 72 h. A high percentage (>60%) of the NPD was associated with algal cells. Only a small fraction (<11%) of the NPD, however, was transferred to daphnids fed for 21 days on the NPD-exposed algae. The uptake and trophic transfer of the 270 nm Fe-PS-NPD were higher than those for the 640 nm Eu-PS-NPD, indicating that smaller NPD are more likely to transfer along food chains. After exposure to Fe-PS-NPD, the time to first brood was prolonged and the number of neonates per adult significantly decreased compared to the control without any exposure and compared to daphnids exposed to the Eu-Ps-NPD. The offspring of daphnids exposed to Eu-PS-NPD through algae, showed a traceable concentration of Eu, suggesting that NPD are transferred from parents to offspring. We conclude that NPD can be transferred in food chains and caused reproductive toxicity as a function of NPD size. Studies with prolonged exposure and weathered NPD are endeavored to increase environmental realism of the impacts determined.
Collapse
Affiliation(s)
- Fazel Abdolahpur Monikh
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300, RA Leiden, Netherlands; Department of Environmental & Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101, Joensuu, Finland.
| | - Latifeh Chupani
- Biology, Örebro Life Science Center, School of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden; University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Martina G Vijver
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300, RA Leiden, Netherlands
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300, RA Leiden, Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Bilthoven, Netherlands
| |
Collapse
|
14
|
Kruszewska J, Sikorski J, Samsonowicz-Górski J, Matczuk M. A CE-ICP-MS/MS method for the determination of superparamagnetic iron oxide nanoparticles under simulated physiological conditions. Anal Bioanal Chem 2020; 412:8145-8153. [PMID: 32968852 PMCID: PMC7584539 DOI: 10.1007/s00216-020-02948-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/02/2020] [Accepted: 09/09/2020] [Indexed: 11/24/2022]
Abstract
Over the past few years, superparamagnetic iron oxide nanoparticles (SPIONs) have attracted much attention due to their medicinally attractive properties and their possible application in cancer diagnosis and therapy. However, there is still a lack of appropriate methods to enable quantitative monitoring of the particle changes in a physiological environment, which could be beneficial for evaluating their in vitro and in vivo behavior. For this reason, the main goal of this study was the development of a novel capillary electrophoresis-inductively coupled plasma mass spectrometry (CE-ICP-MS/MS) method for the determination of SPIONs suitable for the future examination of their changes upon incubation with proteins under simulated physiological conditions. The type and flow rate of the collision/reaction gas were chosen with the aim of simultaneous monitoring of Fe and S. The type and concentration of the background electrolyte, applied voltage, and sample loading were optimized to obtain SPION signals of the highest intensity and minimum half-width of the peak. Analytical parameters were at a satisfactory level: reproducibility (intra- and inter-day) of migration times and peak areas (presented as RSD) in the range of 0.23-4.98%, recovery: 96.7% and 93.3%, the limit of detection (for monitoring 56Fe16O+ by mass-shift approach) 54 ng mL-1 Fe (0.97 μM) and 101 ng mL-1 Fe (1.82 μM) for SPIONs with carboxyl and amino terminal groups, respectively. To the best of our knowledge, this is the first reported use of CE-ICP-MS/MS for the quantification of SPIONs and monitoring of interactions with proteins.
Collapse
Affiliation(s)
- Joanna Kruszewska
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664, Warsaw, Poland
| | - Jacek Sikorski
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664, Warsaw, Poland
| | - Jan Samsonowicz-Górski
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664, Warsaw, Poland
| | - Magdalena Matczuk
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664, Warsaw, Poland.
| |
Collapse
|
15
|
Bersweiler M, Rubio HG, Honecker D, Michels A, Bender P. The benefits of a Bayesian analysis for the characterization of magnetic nanoparticles. NANOTECHNOLOGY 2020; 31:435704. [PMID: 32659748 DOI: 10.1088/1361-6528/aba57b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Magnetic nanoparticles offer a unique potential for various biomedical applications, but prior to commercial usage a standardized characterization of their structural and magnetic properties is required. For a thorough characterization, the combination of conventional magnetometry and advanced scattering techniques has shown great potential. In the present work, we characterize a powder sample of high-quality iron oxide nanoparticles that are surrounded with a homogeneous thick silica shell by DC magnetometry and magnetic small-angle neutron scattering (SANS). To retrieve the particle parameters such as their size distribution and saturation magnetization from the data, we apply standard model fits of individual data sets as well as global fits of multiple curves, including a combination of the magnetometry and SANS measurements. We show that by combining a standard least-squares fit with a subsequent Bayesian approach for the data refinement, the probability distributions of the model parameters and their cross correlations can be readily extracted, which enables a direct visual feedback regarding the quality of the fit. This prevents an overfitting of data in case of highly correlated parameters and renders the Bayesian method as an ideal component for a standardized data analysis of magnetic nanoparticle samples.
Collapse
Affiliation(s)
- Mathias Bersweiler
- Department of Physics and Materials Science, University of Luxembourg, L-1511, Luxembourg
| | | | | | | | | |
Collapse
|
16
|
Torras M, Moya C, Pasquevich GA, Roig A. Accurate iron quantification in colloids and nanocomposites by a simple UV-Vis protocol. Mikrochim Acta 2020; 187:488. [PMID: 32761453 DOI: 10.1007/s00604-020-04454-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/14/2020] [Indexed: 10/23/2022]
Abstract
The selection and comparative study is reported of calibration curves to quantify iron by a simple UV-Vis protocol based on the formation of iron (III) chloride complexes. The reliability of each calibration curve was evaluated using statistical and analytical parameters. The robustness of each calibration curve using superparamagnetic iron oxide nanoparticles (SPIONs) of different sizes and surface functionalization is demonstrated . We have also evaluated the effect of the particle coating and estimated the minimum time to ensure the full oxidation of iron (II) to (III) in sample solutions. Results from UV-Vis are comparable with those obtained from ICP-OES and from other spectroscopic techniques to quantify the iron. We advocate the proposed protocol as a simple and non-expensive route to determine accurately the iron content in colloidal and nanocomposite iron-based materials. Graphical abstract.
Collapse
Affiliation(s)
- Miquel Torras
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Carrer dels Til·lers s/n Campus UAB, 08193, Bellaterra, Spain
| | - Carlos Moya
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Carrer dels Til·lers s/n Campus UAB, 08193, Bellaterra, Spain.
- École Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, 165/64, 1050, Brussels, Belgium.
| | - Gustavo A Pasquevich
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Carrer dels Til·lers s/n Campus UAB, 08193, Bellaterra, Spain
- Instituto de Física La Plata (IFLP-CONICET), Universidad Nacional de la Plata, Diagonal 113 entre 63 y 64, 1900, La Plata, Argentina
| | - Anna Roig
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Carrer dels Til·lers s/n Campus UAB, 08193, Bellaterra, Spain
| |
Collapse
|
17
|
Martín MJ, Gentili C, Lassalle V. In vitro Biological Tests as the First Tools To Validate Magnetic Nanotheranostics for Colorectal Cancer Models. ChemMedChem 2020; 15:1003-1017. [PMID: 32365271 DOI: 10.1002/cmdc.202000119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/03/2020] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer death. Nanotechnology has focused on reaching more effective treatments. In this concern, magnetic nanoparticles (MNPs) have been studied for a wide range of biomedical applications related to CRC, such as diagnostic imaging, drug delivery and thermal therapy. However, limited research is currently found in the open literature that refers to nanosystems combining all these mentioned areas (theranostics). When developing nanosystems intended as theranostics applied to CRC, possible variations between patients must be considered. Therefore, multiple in vitro assays are required as guidance for future preclinical and clinical trials. The objective of this contribution is to evaluate the available and recent literature regarding the interactions of MNP and CRC models, aiming to critically analyze the information given by the commonly used assays and evaluate the data provided by each one with a view to implementing this novel technology in CRC diagnostics and therapy.
Collapse
Affiliation(s)
- María Julia Martín
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (CONICET-UNS), Alem 1253, Bahía Blanca, Argentina.,INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (CONICET-UNS), San Juan 670, Bahía Blanca, Argentina
| | - Claudia Gentili
- INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (CONICET-UNS), San Juan 670, Bahía Blanca, Argentina
| | - Verónica Lassalle
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (CONICET-UNS), Alem 1253, Bahía Blanca, Argentina
| |
Collapse
|