1
|
Vicentini FC, Silva LRG, Stefano JS, Lima ARF, Prakash J, Bonacin JA, Janegitz BC. Starch-Based Electrochemical Sensors and Biosensors: A Review. BIOMEDICAL MATERIALS & DEVICES 2022. [PMCID: PMC9510496 DOI: 10.1007/s44174-022-00012-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Natural green compounds for sensor modification (binders) are challenging in electrochemistry. Starch is a carbohydrate biopolymer that has been used extensively in the development of biomaterials for the food industry due to its ability to impart textural characteristics and provide gelling or film formation. In particular, the excellent film-forming characteristics have been used for the development of new surface modifying architectures for electrodes. Here, we highlight a very comprehensive overview of the properties of interest of various types of starch in conjunction with (bio)materials in the chemical modification of sensors and biosensors. Throughout the review, we first give an introduction to the extraction, applications, and properties of starches followed by an overview of the prospects and their possible applications in electrochemical sensors and biosensors. In this context, we discuss some important characteristics of starches and different strategies of their film formation with an emphasis on their role in the development of electrochemical sensors and biosensors highlighting their main contributions to enhancing the performance of these devices and their applications in environmental and clinical samples.
Collapse
Affiliation(s)
- Fernando C. Vicentini
- Center of Nature Sciences, Federal University of São Carlos, Rod. Lauri Simões de Barros km 12, Buri, SP 18290-000 Brazil
| | - Luiz R. G. Silva
- Laboratory of Sensors, Nanomedicine, and Nanostructured Materials (LSNano), Federal University of São Carlos, Araras, São Paulo 13600-970 Brazil
| | - Jéssica S. Stefano
- Laboratory of Sensors, Nanomedicine, and Nanostructured Materials (LSNano), Federal University of São Carlos, Araras, São Paulo 13600-970 Brazil
| | - Alan R. F. Lima
- Center of Nature Sciences, Federal University of São Carlos, Rod. Lauri Simões de Barros km 12, Buri, SP 18290-000 Brazil
| | - Jai Prakash
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur, Himachal Pradesh 177005 India
| | - Juliano A. Bonacin
- Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo 13083-859 Brazil
| | - Bruno C. Janegitz
- Laboratory of Sensors, Nanomedicine, and Nanostructured Materials (LSNano), Federal University of São Carlos, Araras, São Paulo 13600-970 Brazil
| |
Collapse
|
2
|
dos Santos AM, Junior AGT, Carvalho SG, Chorilli M. An updated review on properties, nanodelivery systems, and analytical methods for the determination of 5-fluorouracil in pharmaceutical and biological samples. Curr Pharm Des 2022; 28:1501-1512. [DOI: 10.2174/1381612828666220509150918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/22/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
5-Fluorouracil (5-FU) is an antimetabolite drug used for over 70 years as first-line chemotherapy to treat various types of cancer, such as head, neck, breast and colorectal cancer. 5-FU acts mainly by inhibiting thymidylate synthase, thereby interfering with deoxyribonucleic acid (DNA) replication or by 5-FU incorporating into DNA, causing damage to the sequence of nucleotides. Being analogous to uracil, 5-FU enters cells using the same transport mechanism, where a is converted into active metabolites such as fluorouridine triphosphate (FUTP), fluorodeoxyuridine monophosphate (FdUMP), and fluorodeoxyuridine triphosphate (FdUTP). Currently, there are several nanodelivery systems being developed and evaluated at the preclinical level to overcome existing limitations to 5-FU chemotherapy, including liposomes, polymeric nanoparticles, polymeric micelles, nanoemulsions, mesoporous silica nanoparticles, and solid lipid nanoparticles. Therefore, it is essential to choose and develop suitable analytical methods for the quantification of 5-FU and its metabolites (5-fluorouridine and 5-fluoro-2-deoxyuridine) in pharmaceutical and biological samples. Among the analytical techniques, chromatographic methods are commonly the most used for the quantification of 5-FU from different matrices. However, other analytical methods have also been developed for the determination of 5-FU, such as electrochemical methods, a sensitive, selective, and precise technique, in addition to having a reduced cost. Here, we first review the physicochemical properties, mechanism of action, and advances in 5-FU nanodelivery systems. Next, we summarize the current progress of other chromatographic methods described to determine 5-FU. Lastly, we discuss the advantages of electrochemical methods for the identification and quantification of 5-FU and its metabolites in pharmaceutical and biological samples.
Collapse
Affiliation(s)
- Aline Martins dos Santos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, 14800-903, Brazil
| | | | - Suzana Gonçalves Carvalho
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, 14800-903, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, 14800-903, Brazil
| |
Collapse
|
3
|
Wang J, Qu X, Zhao L, Yan B. Fabricating Nanosheets and Ratiometric Detection of 5-Fluorouracil by Covalent Organic Framework Hybrid Material. Anal Chem 2021; 93:4308-4316. [PMID: 33616391 DOI: 10.1021/acs.analchem.0c05309] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Covalent organic framework (COF) nanosheets (NSs) are a new member in the family of two-dimensional (2D) nanomaterials that received increasing attention. The ability to prepare COF NSs with rapid acquisition is of great importance to explore their distinctive properties and potential applications. Herein, we elaborate design a new COF hybrid material EB-TFP:Eu(BTA)4 as a sensing platform. In the process of ratiometric fluorescence detection of 5-fluorouracil (5FU), an anticancer drug, we realize the preparation of COF NSs. Interaction occurs between 5FU and COF hybrid material, where the interlayer π-π stacking of COF was weakened, benefiting the exfoliation of bulk COF to acquire 2D COF NSs. This strategy provides not only a sensitive and selective 5FU sensor but also a significant inspiration for engineering 2D COF NSs.
Collapse
Affiliation(s)
- Jinmin Wang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xianglong Qu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Limin Zhao
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China
| | - Bing Yan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.,School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
4
|
Kang K, Wang B, Ji X, Liu Y, Zhao W, Du Y, Guo Z, Ren J. Hemin-doped metal-organic frameworks based nanozyme electrochemical sensor with high stability and sensitivity for dopamine detection. RSC Adv 2021; 11:2446-2452. [PMID: 35424163 PMCID: PMC8693727 DOI: 10.1039/d0ra08224d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/28/2020] [Indexed: 12/26/2022] Open
Abstract
This study reports a new type of artificial nanozyme based on Hemin-doped-HKUST-1 (HKUST-1, also referred to as MOF-199; a face-centered-cubic MOF containing nanochannels) as a redox mediator for the detection of dopamine (DA). Hemin-doped-HKUST-1 was successfully synthesized by one-pot hydrothermal method, which was combined with reduced graphene oxide (rGO) modified on a glassy carbon electrode (GCE) to construct a sensor (Hemin-doped HKUST-1/rGO/GCE). The morphology and structure of Hemin-doped-HKUST-1 were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and infrared spectra (IR) techniques. The Hemin-doped HKUST-1/rGO nanozyme showed an excellent electrocatalytic activity for DA oxidation, which is due to the enhanced Hemin activity through the formation of a metal-organic framework (MOFs) and the synergy between the Hemin-doped HKUST-1 and rGO in nanozyme. The resulted sensor exhibited a high sensitivity of 1.224 μA μM-1, with a lower detection limit of 3.27 × 10-8 M (S/N = 3) and a wide linear range of 0.03-10 μM for DA detection. In addition, due to the stabilizing effect of MOFs on heme, the sensor showed satisfactory stability and has been successfully applied to the detection of DA in serum samples, indicating that this work has potential value in clinical work.
Collapse
Affiliation(s)
- Kai Kang
- School of Pharmacy, Hebei Medical University Shijiazhuang 050017 PR China +86-311-86265593
| | - Beibei Wang
- School of Pharmacy, Hebei Medical University Shijiazhuang 050017 PR China +86-311-86265593
| | - Xueping Ji
- School of Pharmacy, Hebei Medical University Shijiazhuang 050017 PR China +86-311-86265593
- Hebei Key Laboratory of Forensic Medicine Shijiazhuang 050017 PR China
| | - Yuheng Liu
- School of Pharmacy, Hebei Medical University Shijiazhuang 050017 PR China +86-311-86265593
| | - Wenrui Zhao
- School of Pharmacy, Hebei Medical University Shijiazhuang 050017 PR China +86-311-86265593
| | - Yaqing Du
- School of Pharmacy, Hebei Medical University Shijiazhuang 050017 PR China +86-311-86265593
| | - Zhiyong Guo
- School of Materials Science and Chemical Engineering, Ningbo University Ningbo 315211 PR China
| | - Jujie Ren
- Department of Chemistry, School of Sciences, Hebei University of Science and Technology Shijiazhuang 050018 PR China
| |
Collapse
|
5
|
Bojko L, de Jonge G, Lima D, Lopes LC, Viana AG, Garcia JR, Pessôa CA, Wohnrath K, Inaba J. Porphyran-capped silver nanoparticles as a promising antibacterial agent and electrode modifier for 5-fluorouracil electroanalysis. Carbohydr Res 2020; 498:108193. [PMID: 33190002 DOI: 10.1016/j.carres.2020.108193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/22/2020] [Accepted: 11/03/2020] [Indexed: 01/08/2023]
Abstract
In the present work, the green synthesis of silver nanoparticles (AgNPs) using the sulfated polysaccharide porphyran (PFR) as capping agent and d-glucose as reducing agent is described. PFR was extracted from red seaweed and characterized by employing 13C NMR and determination of total sugar, protein, and sulfate contents. The obtained AgNPs-PFR were characterized by using UV-VIS spectroscopy, zeta potential determination, FESEM, and TEM, which demonstrated that PFR was effective at capping the AgNPs, yielding stable suspensions. The AgNPs-PFR presented good antimicrobial properties against Gram-positive and Gram-negative bacterial strains (Staphylococcus aureus and Escherichia coli, respectively). The AgNPs-PFR were also employed as the modifier of carbon paste electrodes, which were efficiently applied as electrochemical sensors for the determination of 5-fluorouracil (5-FU), an important anticancer drug, through square wave voltammetry (SWV). The AgNPs-PFR improved the electrochemical properties of the electrodes, and enhanced their electroanalytical performance. The developed sensing device presented detection and quantification limits equal to 10.7 and 35.8 μmol L-1, respectively, towards 5-FU determination. The proposed electrochemical sensor successfully quantified 5-FU in a real pharmaceutical formulation, confirming its potential as a new promising analytical detection tool for 5-FU quality control purposes.
Collapse
Affiliation(s)
- Luana Bojko
- Departamento de Química, Universidade Estadual de Ponta Grossa, Av. Gal. Carlos Cavalcanti, 4748, 84030-900, Ponta Grossa, PR, Brazil
| | - Gabriela de Jonge
- Departamento de Química, Universidade Estadual de Ponta Grossa, Av. Gal. Carlos Cavalcanti, 4748, 84030-900, Ponta Grossa, PR, Brazil
| | - Dhésmon Lima
- Departamento de Química, Universidade Estadual de Ponta Grossa, Av. Gal. Carlos Cavalcanti, 4748, 84030-900, Ponta Grossa, PR, Brazil
| | - Luma Clarindo Lopes
- Departamento de Química, Universidade Estadual de Ponta Grossa, Av. Gal. Carlos Cavalcanti, 4748, 84030-900, Ponta Grossa, PR, Brazil
| | - Adriano Gonçalves Viana
- Departamento de Química, Universidade Estadual de Ponta Grossa, Av. Gal. Carlos Cavalcanti, 4748, 84030-900, Ponta Grossa, PR, Brazil
| | - Jarem Raul Garcia
- Departamento de Química, Universidade Estadual de Ponta Grossa, Av. Gal. Carlos Cavalcanti, 4748, 84030-900, Ponta Grossa, PR, Brazil
| | - Christiana Andrade Pessôa
- Departamento de Química, Universidade Estadual de Ponta Grossa, Av. Gal. Carlos Cavalcanti, 4748, 84030-900, Ponta Grossa, PR, Brazil
| | - Karen Wohnrath
- Departamento de Química, Universidade Estadual de Ponta Grossa, Av. Gal. Carlos Cavalcanti, 4748, 84030-900, Ponta Grossa, PR, Brazil
| | - Juliana Inaba
- Departamento de Química, Universidade Estadual de Ponta Grossa, Av. Gal. Carlos Cavalcanti, 4748, 84030-900, Ponta Grossa, PR, Brazil.
| |
Collapse
|
6
|
Lanthanum Ferrite Ceramic Powders: Synthesis, Characterization and Electrochemical Detection Application. MATERIALS 2020; 13:ma13092061. [PMID: 32365678 PMCID: PMC7254238 DOI: 10.3390/ma13092061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 11/17/2022]
Abstract
The perovskite-type lanthanum ferrite, LaFeO3, has been prepared by thermal decomposition of in situ obtained lanthanum ferrioxalate compound precursor, LaFe(C2O4)3·3H2O. The oxalate precursor was synthesized through the redox reaction between 1,2-ethanediol and nitrate ion and characterized by chemical analysis, infrared spectroscopy, and thermal analysis. LaFeO3 obtained after the calcination of the precursor for at least 550-800 °C/1 h have been investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). A boron-doped diamond electrode (BDD) modified with LaFeO3 ceramic powders at 550 °C (LaFeO3/BDD) by simple immersion was characterized by cyclic voltammetry and tested for the voltammetric and amperometric detection of capecitabine (CCB), which is a cytostatic drug considered as an emerging pollutant in water. The modified electrode exhibited a complex electrochemical behaviour by several redox systems in direct relation to the electrode potential range. The results obtained by cyclic voltammetry (CV), differential-pulsed voltammetry (DPV), and multiple-pulsed amperometry proved the electrocatalytic effect to capecitabine oxidation and reduction and allowed its electrochemical detection in alkaline aqueous solution.
Collapse
|