1
|
Silva LM, Martins EC, Ferreira AAP, Wulff NA, Yamanaka H. Impedimetric immunosensor versus qPCR for Huanglongbing detection. Talanta 2025; 283:127132. [PMID: 39492142 DOI: 10.1016/j.talanta.2024.127132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/10/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Citriculture is facing challenges due to the spread of various diseases, among which the most threatening, with worldwide occurrence, is Huanglongbing (HLB), caused by the bacteria Candidatus Liberibacter spp., vectored by psyllids. In orchards, HLB-infected plants are identified by visual observation of symptoms. For laboratory diagnosis, the gold standard is the polymerase chain reaction (PCR), requiring expertise and specific equipment, and with high financial cost. In this work, a selective impedimetric immunosensor was developed for the detection and determination of Ca. L. asiaticus (CLas) in citrus samples. An anti-HLB antibody against the outer membrane protein (OMP) sequence of CLas was obtained and immobilized on previously synthesized and characterized magnetic nanoparticles. The immobilized antibody was presented to various citrus leaf sample extracts. After the affinity reaction with the antigen, a washing step was performed to minimize matrix effects. The affinity reaction was monitored by electrochemical impedance spectroscopy, using a glassy carbon working electrode containing a neodymium magnet. The developed device was able to distinguish HLB-positive samples from HLB-negative samples and those with other infections. The results obtained with the proposed methodology were in good agreement with quantitative PCR (qPCR).
Collapse
Affiliation(s)
- Lucas Moreira Silva
- São Paulo State University (UNESP), Institute of Chemistry, Rua Professor Francisco Degni 55, 14800-060, Araraquara, SP, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation & Removal of Micropollutants and Radioactives (INCT-DATREM), Araraquara, SP, Brazil.
| | - Elaine Cristina Martins
- Fund for Citrus Protection (Fundecitrus), Department of Research and Development, 14807-040, Araraquara, SP, Brazil
| | - Antonio Aparecido Pupim Ferreira
- São Paulo State University (UNESP), Institute of Chemistry, Rua Professor Francisco Degni 55, 14800-060, Araraquara, SP, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation & Removal of Micropollutants and Radioactives (INCT-DATREM), Araraquara, SP, Brazil
| | - Nelson Arno Wulff
- Fund for Citrus Protection (Fundecitrus), Department of Research and Development, 14807-040, Araraquara, SP, Brazil
| | - Hideko Yamanaka
- São Paulo State University (UNESP), Institute of Chemistry, Rua Professor Francisco Degni 55, 14800-060, Araraquara, SP, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation & Removal of Micropollutants and Radioactives (INCT-DATREM), Araraquara, SP, Brazil
| |
Collapse
|
2
|
Synthesis, in vitro anticancer activity and reactions with biomolecule of gold(I)-NHC carbene complexes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Nascimento ED, Fonseca WT, de Oliveira TR, de Correia CRSTB, Faça VM, de Morais BP, Silvestrini VC, Pott-Junior H, Teixeira FR, Faria RC. COVID-19 diagnosis by SARS-CoV-2 Spike protein detection in saliva using an ultrasensitive magneto-assay based on disposable electrochemical sensor. SENSORS AND ACTUATORS. B, CHEMICAL 2022; 353:131128. [PMID: 34866796 DOI: 10.1016/j.snb.2021.131148] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 05/27/2023]
Abstract
The outbreak of the COVID-19 pandemic, caused by Severe Acute Respiratory Syndrome of Coronavirus 2 (SARS-CoV-2), has fueled the search for diagnostic tests aiming at the control and reduction of the viral transmission. The main technique used for diagnosing the Coronavirus disease (COVID-19) is the reverse transcription-polymerase chain reaction (RT-PCR) technique. However, considering the high number of cases and the underlying limitations of the RT-PCR technique, especially with regard to accessibility and cost of the test, one does not need to overemphasize the need to develop new and less expensive testing techniques that can aid the early diagnosis of the disease. With that in mind, we developed an ultrasensitive magneto-assay using magnetic beads and gold nanoparticles conjugated to human angiotensin-converting enzyme 2 (ACE2) peptide (Gln24-Gln42) for the capturing and detection of SARS-CoV-2 Spike protein in human saliva. The technique applied involved the use of a disposable electrochemical device containing eight screen-printed carbon electrodes which allow the simultaneous analysis of eight samples. The magneto-assay exhibited an ultralow limit of detection of 0.35 ag mL-1 for the detection of SARS-CoV-2 Spike protein in saliva. The magneto-assay was tested in saliva samples from healthy and SARS-CoV-2-infected individuals. In terms of efficiency, the proposed technique - which presented a sensitivity of 100.0% and specificity of 93.7% for SARS-CoV-2 Spike protein-exhibited great similarity with the RT-PCR technique. The results obtained point to the application potential of this simple, low-cost magneto-assay for saliva-based point-of-care COVID-19 diagnosis.
Collapse
Affiliation(s)
- Evair D Nascimento
- Department of Chemistry, Federal University of São Carlos-UFSCar, Rod. Washington Luís km 235, São Carlos, SP, 13565-905, Brazil
| | - Wilson T Fonseca
- Department of Chemistry, Federal University of São Carlos-UFSCar, Rod. Washington Luís km 235, São Carlos, SP, 13565-905, Brazil
| | - Tássia R de Oliveira
- Department of Chemistry, Federal University of São Carlos-UFSCar, Rod. Washington Luís km 235, São Carlos, SP, 13565-905, Brazil
| | - Camila R S T B de Correia
- Department of Genetics and Evolution, Federal University of Sao Carlos-UFSCar, São Carlos, SP, 13565-905, Brazil
| | - Vitor M Faça
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo-USP, Brazil
| | - Beatriz P de Morais
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo-USP, Brazil
| | - Virginia C Silvestrini
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo-USP, Brazil
| | - Henrique Pott-Junior
- Department of Medicine, Federal University of São Carlos-UFSCar, São Carlos, SP, 13565-905, Brazil
| | - Felipe R Teixeira
- Department of Genetics and Evolution, Federal University of Sao Carlos-UFSCar, São Carlos, SP, 13565-905, Brazil
| | - Ronaldo C Faria
- Department of Chemistry, Federal University of São Carlos-UFSCar, Rod. Washington Luís km 235, São Carlos, SP, 13565-905, Brazil
| |
Collapse
|
4
|
Nascimento ED, Fonseca WT, de Oliveira TR, de Correia CRSTB, Faça VM, de Morais BP, Silvestrini VC, Pott-Junior H, Teixeira FR, Faria RC. COVID-19 diagnosis by SARS-CoV-2 Spike protein detection in saliva using an ultrasensitive magneto-assay based on disposable electrochemical sensor. SENSORS AND ACTUATORS. B, CHEMICAL 2022; 353:131128. [PMID: 34866796 PMCID: PMC8626148 DOI: 10.1016/j.snb.2021.131128] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 05/03/2023]
Abstract
The outbreak of the COVID-19 pandemic, caused by Severe Acute Respiratory Syndrome of Coronavirus 2 (SARS-CoV-2), has fueled the search for diagnostic tests aiming at the control and reduction of the viral transmission. The main technique used for diagnosing the Coronavirus disease (COVID-19) is the reverse transcription-polymerase chain reaction (RT-PCR) technique. However, considering the high number of cases and the underlying limitations of the RT-PCR technique, especially with regard to accessibility and cost of the test, one does not need to overemphasize the need to develop new and less expensive testing techniques that can aid the early diagnosis of the disease. With that in mind, we developed an ultrasensitive magneto-assay using magnetic beads and gold nanoparticles conjugated to human angiotensin-converting enzyme 2 (ACE2) peptide (Gln24-Gln42) for the capturing and detection of SARS-CoV-2 Spike protein in human saliva. The technique applied involved the use of a disposable electrochemical device containing eight screen-printed carbon electrodes which allow the simultaneous analysis of eight samples. The magneto-assay exhibited an ultralow limit of detection of 0.35 ag mL-1 for the detection of SARS-CoV-2 Spike protein in saliva. The magneto-assay was tested in saliva samples from healthy and SARS-CoV-2-infected individuals. In terms of efficiency, the proposed technique - which presented a sensitivity of 100.0% and specificity of 93.7% for SARS-CoV-2 Spike protein-exhibited great similarity with the RT-PCR technique. The results obtained point to the application potential of this simple, low-cost magneto-assay for saliva-based point-of-care COVID-19 diagnosis.
Collapse
Affiliation(s)
- Evair D Nascimento
- Department of Chemistry, Federal University of São Carlos-UFSCar, Rod. Washington Luís km 235, São Carlos, SP, 13565-905, Brazil
| | - Wilson T Fonseca
- Department of Chemistry, Federal University of São Carlos-UFSCar, Rod. Washington Luís km 235, São Carlos, SP, 13565-905, Brazil
| | - Tássia R de Oliveira
- Department of Chemistry, Federal University of São Carlos-UFSCar, Rod. Washington Luís km 235, São Carlos, SP, 13565-905, Brazil
| | - Camila R S T B de Correia
- Department of Genetics and Evolution, Federal University of Sao Carlos-UFSCar, São Carlos, SP, 13565-905, Brazil
| | - Vitor M Faça
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo-USP, Brazil
| | - Beatriz P de Morais
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo-USP, Brazil
| | - Virginia C Silvestrini
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo-USP, Brazil
| | - Henrique Pott-Junior
- Department of Medicine, Federal University of São Carlos-UFSCar, São Carlos, SP, 13565-905, Brazil
| | - Felipe R Teixeira
- Department of Genetics and Evolution, Federal University of Sao Carlos-UFSCar, São Carlos, SP, 13565-905, Brazil
| | - Ronaldo C Faria
- Department of Chemistry, Federal University of São Carlos-UFSCar, Rod. Washington Luís km 235, São Carlos, SP, 13565-905, Brazil
| |
Collapse
|
5
|
Zhao X, Meng X, Ragauskas AJ, Lai C, Ling Z, Huang C, Yong Q. Unlocking the secret of lignin-enzyme interactions: Recent advances in developing state-of-the-art analytical techniques. Biotechnol Adv 2021; 54:107830. [PMID: 34480987 DOI: 10.1016/j.biotechadv.2021.107830] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/07/2021] [Accepted: 08/29/2021] [Indexed: 02/08/2023]
Abstract
Bioconversion of renewable lignocellulosics to produce liquid fuels and chemicals is one of the most effective ways to solve the problem of fossil resource shortage, energy security, and environmental challenges. Among the many biorefinery pathways, hydrolysis of lignocellulosics to fermentable monosaccharides by cellulase is arguably the most critical step of lignocellulose bioconversion. In the process of enzymatic hydrolysis, the direct physical contact between enzymes and cellulose is an essential prerequisite for the hydrolysis to occur. However, lignin is considered one of the most recalcitrant factors hindering the accessibility of cellulose by binding to cellulase unproductively, which reduces the saccharification rate and yield of sugars. This results in high costs for the saccharification of carbohydrates. The various interactions between enzymes and lignin have been explored from different perspectives in literature, and a basic lignin inhibition mechanism has been proposed. However, the exact interaction between lignin and enzyme as well as the recently reported promotion of some types of lignin on enzymatic hydrolysis is still unclear at the molecular level. Multiple analytical techniques have been developed, and fully unlocking the secret of lignin-enzyme interactions would require a continuous improvement of the currently available analytical techniques. This review summarizes the current commonly used advanced research analytical techniques for investigating the interaction between lignin and enzyme, including quartz crystal microbalance with dissipation (QCM-D), surface plasmon resonance (SPR), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, atomic force microscopy (AFM), nuclear magnetic resonance (NMR) spectroscopy, fluorescence spectroscopy (FLS), and molecular dynamics (MD) simulations. Interdisciplinary integration of these analytical methods is pursued to provide new insight into the interactions between lignin and enzymes. This review will serve as a resource for future research seeking to develop new methodologies for a better understanding of the basic mechanism of lignin-enzyme binding during the critical hydrolysis process.
Collapse
Affiliation(s)
- Xiaoxue Zhao
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xianzhi Meng
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA; Center for Renewable Carbon, Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN 37996, USA; Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Chenhuan Lai
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhe Ling
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing 210037, China
| | - Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Qiang Yong
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
6
|
Pohanka M. Biosensors and Bioanalytical Devices based on Magnetic Particles: A Review. Curr Med Chem 2021; 28:2828-2841. [PMID: 32744958 DOI: 10.2174/0929867327666200730213721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/05/2020] [Accepted: 06/15/2020] [Indexed: 11/22/2022]
Abstract
Magnetic particles play an important role in current technology, and this field of technology extends to a broader progression. The term magnetic particles typically cover the paramagnetic particles and super-paramagnetic particles. Various materials like iron oxide are common, but other materials are available as well; a survey of such materials has been included in this work. They can serve for technological purposes like separation and isolation of chemical products or toxic waste, their use in the diagnosis of pathologies, drug delivery and other similar applications. In this review, biosensors, bioanalytical devices and bioassays, have been discussed. Materials for magnetic particles preparation, methods of assay, biosensors and bioassays working in stationary as well as flow-through arrangements are described here. A survey of actual literature has been provided as well.
Collapse
Affiliation(s)
- Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defense, Trebesska 1575, Hradec Kralove CZ-50001, Czech Republic
| |
Collapse
|
7
|
Forzato C, Vida V, Berti F. Biosensors and Sensing Systems for Rapid Analysis of Phenolic Compounds from Plants: A Comprehensive Review. BIOSENSORS 2020; 10:E105. [PMID: 32846992 PMCID: PMC7557957 DOI: 10.3390/bios10090105] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 01/18/2023]
Abstract
Phenolic compounds are secondary metabolites frequently found in plants that exhibit many different effects on human health. Because of the relevant bioactivity, their identification and quantification in agro-food matrices as well as in biological samples are a fundamental issue in the field of quality control of food and food supplements, and clinical analysis. In this review, a critical selection of sensors and biosensors for rapid and selective detection of phenolic compounds is discussed. Sensors based on electrochemistry, photoelectrochemistry, fluorescence, and colorimetry are discussed including devices with or without specific recognition elements, such as biomolecules, enzymes and molecularly imprinted materials. Systems that have been tested on real matrices are prevalently considered but also techniques that show potential development in the field.
Collapse
Affiliation(s)
| | | | - Federico Berti
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, via Giorgieri 1, 34127 Trieste, Italy; (C.F.); (V.V.)
| |
Collapse
|
8
|
Simple, fast, and ultrasensitive method for textile dye determination based on luminol electrochemiluminescence (ECL) inhibition. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04571-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|