1
|
Seidemann L, Lippold CP, Rohm CM, Eckel JC, Schicht G, Matz-Soja M, Berg T, Seehofer D, Damm G. Sex hormones differently regulate lipid metabolism genes in primary human hepatocytes. BMC Endocr Disord 2024; 24:135. [PMID: 39090659 PMCID: PMC11292922 DOI: 10.1186/s12902-024-01663-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is higher in men than in women. Hormonal and genetic causes may account for the sex differences in MASLD. Current human in vitro liver models do not sufficiently take the influence of biological sex and sex hormones into consideration. METHODS Primary human hepatocytes (PHHs) were isolated from liver specimen of female and male donors and cultured with sex hormones (17β-estradiol, testosterone and progesterone) for up to 72 h. mRNA expression levels of 8 hepatic lipid metabolism genes were analyzed by RT-qPCR. Sex hormones and their metabolites were determined in cell culture supernatants by LC-MS analyses. RESULTS A sex-specific expression was observed for LDLR (low density lipoprotein receptor) with higher mRNA levels in male than female PHHs. All three sex hormones were metabolized by PHHs and the effects of hormones on gene expression levels varied depending on hepatocyte sex. Only in female PHHs, 17β-estradiol treatment affected expression levels of PPARA (peroxisome proliferator-activated receptor alpha), LIPC (hepatic lipase) and APOL2 (apolipoprotein L2). Further changes in mRNA levels of female PHHs were observed for ABCA1 (ATP-binding cassette, sub-family A, member 1) after testosterone and for ABCA1, APOA5 (apolipoprotein A-V) and PPARA after progesterone treatment. Only the male PHHs showed changing mRNA levels for LDLR after 17β-estradiol and for APOA5 after testosterone treatment. CONCLUSIONS Male and female PHHs showed differences in their expression levels of hepatic lipid metabolism genes and their responsiveness towards sex hormones. Thus, cellular sex should be considered, especially when investigating the pathophysiological mechanisms of MASLD.
Collapse
Affiliation(s)
- Lena Seidemann
- Department of Hepatobiliary Surgery and Visceral Transplantation, Clinic for Visceral, Transplant, Thoracic and Vascular Surgery, Leipzig University Medical Center, 04103, Leipzig, Germany
- Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103, Leipzig, Germany
| | - Clara Paula Lippold
- Department of Hepatobiliary Surgery and Visceral Transplantation, Clinic for Visceral, Transplant, Thoracic and Vascular Surgery, Leipzig University Medical Center, 04103, Leipzig, Germany
- Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103, Leipzig, Germany
| | - Carolin Marie Rohm
- Department of Hepatobiliary Surgery and Visceral Transplantation, Clinic for Visceral, Transplant, Thoracic and Vascular Surgery, Leipzig University Medical Center, 04103, Leipzig, Germany
- Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103, Leipzig, Germany
| | - Julian Connor Eckel
- Department of Hepatobiliary Surgery and Visceral Transplantation, Clinic for Visceral, Transplant, Thoracic and Vascular Surgery, Leipzig University Medical Center, 04103, Leipzig, Germany
- Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103, Leipzig, Germany
| | - Gerda Schicht
- Department of Hepatobiliary Surgery and Visceral Transplantation, Clinic for Visceral, Transplant, Thoracic and Vascular Surgery, Leipzig University Medical Center, 04103, Leipzig, Germany
- Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103, Leipzig, Germany
| | - Madlen Matz-Soja
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, 04103, Leipzig, Germany
| | - Thomas Berg
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, 04103, Leipzig, Germany
| | - Daniel Seehofer
- Department of Hepatobiliary Surgery and Visceral Transplantation, Clinic for Visceral, Transplant, Thoracic and Vascular Surgery, Leipzig University Medical Center, 04103, Leipzig, Germany
| | - Georg Damm
- Department of Hepatobiliary Surgery and Visceral Transplantation, Clinic for Visceral, Transplant, Thoracic and Vascular Surgery, Leipzig University Medical Center, 04103, Leipzig, Germany.
- Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103, Leipzig, Germany.
| |
Collapse
|
2
|
Yu S, Zou Y, Ma X, Wang D, Luo W, Tang Y, Mu D, Zhang R, Cheng X, Qiu L. Evolution of LC-MS/MS in clinical laboratories. Clin Chim Acta 2024; 555:117797. [PMID: 38280490 DOI: 10.1016/j.cca.2024.117797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has attracted significant attention in clinical practice owing to its numerous advantages. However, the widespread adoption of this technique is hindered by certain limitations, such as inappropriate analyte selection, low levels of automation, and a lack of specific reference intervals and quality control programs. This review comprehensively summarizes the current challenges associated with LC-MS/MS and proposes potential resolutions. The principle of utility should guide the selection of biomarkers, prioritizing their practical value over sheer quantity. To achieve full-process automation, methodological innovation is crucial for developing high-throughput equipment. Establishing reference intervals for mass spectrometry-based assays across multiple centers and diverse populations is essential for accurate result interpretation. Additionally, the development of commercial quality control materials assumes pivotal importance in ensuring assay reliability and reproducibility. Harmonization and standardization efforts should focus on the development of reference methods and materials for the clinical use of LC-MS/MS. In the future, commercial assay kits and laboratory-developed tests (LDTs) are expected to coexist in clinical laboratories, each offering distinct advantages. The collaborative efforts of diverse professionals is vital for addressing the challenges associated with the clinical application of LC-MS/MS. The anticipated advancements include simplification, increased automation, intelligence, and the standardization of LC-MS/MS, ultimately facilitating its seamless integration into clinical routines for both technicians and clinicians.
Collapse
Affiliation(s)
- Songlin Yu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Yutong Zou
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Xiaoli Ma
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Danchen Wang
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Wei Luo
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Yueming Tang
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Danni Mu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Ruiping Zhang
- Department of Laboratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xinqi Cheng
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China.
| | - Ling Qiu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China.
| |
Collapse
|
3
|
Handelsman DJ, Jones G, Kouzios D, Desai R. Evaluation of testosterone, estradiol and progesterone immunoassay calibrators by liquid chromatography mass spectrometry. Clin Chem Lab Med 2023; 61:1612-1618. [PMID: 37272075 DOI: 10.1515/cclm-2022-1179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/09/2023] [Indexed: 06/06/2023]
Abstract
OBJECTIVES In clinical practice, steroid measurements are performed mainly by direct, non-extraction immunoassays adapted to high throughput, automated immunoassay platforms and employing secondary calibrators. The accuracy of such steroid immunoassays is limited by cross-reactivity with structurally related steroids and nonspecific matrix interference as well as the metrological traceability of manufacturer supplied calibrators. The accuracy of steroid immunoassay calibrators has been little investigated by independent chemical methods. METHODS Steroid concentrations of 41 calibrators (4-6 replicates per calibrator) supplied by four manufacturers for use in testosterone (T), estradiol (E2), and progesterone (P4) commercial immunoassays were measured by ultra-pressure liquid chromatography-mass spectrometry (UPLC-MS). RESULTS Among 14 non-zero T calibrators, six (43 %) deviated significantly from the label concentration with 29 % outside 20 % of it. Among 14 E2 calibrators, eight (57 %) deviated significantly, whereas seven (50 %) were outside 20 % of the label concentration. Among 11 P4 calibrators, eight (73 %) deviated significantly whereas four (36 %) were outside within 20 % of the label concentration. CONCLUSIONS We conclude that inaccurate calibration of manufacturer's supplied standards may contribute to inaccuracy of commercial direct steroid immunoassays.
Collapse
Affiliation(s)
- David J Handelsman
- ANZAC Research Institute, University of Sydney, Concord, NSW, Australia
- Department of Andrology, Concord Hospital, Concord, NSW 2139, Australia
| | - Graham Jones
- SydPath, St Vincent's Hospital, Sydney and University of NSW, Darlinghurst, Australia
| | - Dorothy Kouzios
- Diagnostic Pathology Unit, Concord Repatriation Hospital, Concord, NSW, Australia
| | - Reena Desai
- ANZAC Research Institute, University of Sydney, Concord, NSW, Australia
| |
Collapse
|
4
|
Huang Y, Ye D, Yang J, Zhu W, Li L, Ding Y. Dual recognition elements for selective determination of progesterone based on molecularly imprinted electrochemical aptasensor. Anal Chim Acta 2023; 1264:341288. [PMID: 37230721 DOI: 10.1016/j.aca.2023.341288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
A novel molecularly imprinted electrochemical aptasensor (MIEAS) was constructed for selective progesterone (P4) detection based on SnO2-graphene (SnO2-Gr) nanomaterial and gold nanoparticles (AuNPs). SnO2-Gr with a large specific area and excellent conductivity improved the adsorption capacity of P4. Aptamer, as biocompatible monomer, was captured by AuNPs on modified electrode through Au-S bond. An electropolymerized molecularly imprinted polymer (MIP) film consisted of p-aminothiophenol as chemical functional monomer and P4 as template molecule. Due to the synergetic effect of MIP and aptamer towards P4, this MIEAS exhibited better selectivity than the sensor with MIP or aptamer as single recognition element. The prepared sensor had a low detection limit of 1.73 × 10-15 M in a wide linear range from 10-14 M to 10-5 M. Satisfactory recovery obtained in tap water and milk samples proved that this sensor had great potential in environmental and food analysis.
Collapse
Affiliation(s)
- Yan Huang
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Daixin Ye
- College of Sciences & Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, PR China
| | - Jing Yang
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Wenyi Zhu
- Shanghai University Hospital, Shanghai University, Shanghai, 200444, PR China
| | - Li Li
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, PR China.
| | - Yaping Ding
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, PR China; Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
5
|
Zhang L, Long Q, Zhang J, Zeng Q, Zhao H, Chen W, Zhang T, Zhang C. A candidate reference method and multiple commutable control materials for serum 25-hydroxyvitamin D measurement. J Clin Lab Anal 2022; 36:e24756. [PMID: 36371780 PMCID: PMC9756985 DOI: 10.1002/jcla.24756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES The aim of the current study was to establish a reliable candidate reference method for serum 25-hydroxyvitamin D [25(OH)D] measurement and to assess the commutability of multiple control materials among liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods. METHODS Serum 25-hydroxyvitamin D2 [25(OH)D2] and 25-hydroxyvitamin D3 [25(OH)D3] together with spiked internal standards were extracted with a one-step approach and then analyzed by LC-MS/MS. The commutability assessment for 25(OH)D was conducted according to the Clinical and Laboratory Standards Institute (CLSI) EP14-A3 protocol. 25(OH)D concentrations in 5 levels of unprocessed serum pools, 7 levels of serum pools spiked with 25(OH)D3 or 25(OH)D2, 3 levels of commercial control materials, 2 levels of spiked bovine serum, and 4 levels of external quality assessment (EQA) materials were measured along with 30 single-donor samples using the candidate reference method and two routine LC-MS/MS methods. RESULTS The candidate reference method could separate 25(OH)D2 and 25(OH)D3 from 14 potential interfering compounds completely within a 9-min analysis time. Good method precision was obtained, and measurement results on certified reference material NIST SRM 972a were within the uncertainty of the certified values. All candidate materials were assessed commutable for LC-MS/MS methods. CONCLUSIONS The candidate reference method for serum 25(OH)D measurement is precise, accurate, and robust against interferences and can provide an accuracy base for routine methods. The multiple alternative control materials with commutability among LC-MS/MS methods will facilitate the further standardization for serum 25(OH)D measurement.
Collapse
Affiliation(s)
- Li Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing Engineering Research Center of Laboratory MedicineChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Qichen Long
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing Engineering Research Center of Laboratory MedicineChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jiangtao Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of GerontologyBeijing Engineering Research Center of Laboratory MedicineBeijingChina
| | - Qingzhang Zeng
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing Engineering Research Center of Laboratory MedicineChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Haijian Zhao
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of GerontologyBeijing Engineering Research Center of Laboratory MedicineBeijingChina
| | - Wenxiang Chen
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of GerontologyBeijing Engineering Research Center of Laboratory MedicineBeijingChina
| | - Tianjiao Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of GerontologyBeijing Engineering Research Center of Laboratory MedicineBeijingChina
| | - Chuanbao Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of GerontologyBeijing Engineering Research Center of Laboratory MedicineBeijingChina
| |
Collapse
|
6
|
Zhao W, Zhang J, Feng A, Yin H, Liu C, Pan Y. Rapid Quantification of Endogenous Steroids in Human Serum Using Leidenfrost Effect-Assisted Thermal Desorption Atmospheric Pressure Photoionization Orbitrap Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1250-1259. [PMID: 35748155 DOI: 10.1021/jasms.2c00077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Unconjugated sex steroids in human serum play a crucial role in physiological and pathological studies and are frequently considered as biomarkers in clinical diagnosis. Because of their low polarity, poor volatility, and low concentration, the rapid and highly sensitive analysis of sex steroids in real serum matrix by ambient mass spectrometry is still challenging. Here, Leidenfrost effect-assisted thermal desorption atmospheric pressure photoionization orbitrap mass spectrometry (LETD-APPI-MS) was developed and applied to quantify free sex steroids in human serum without derivatization and chromatography separation within a few minutes. The concentration of target analyte could be increased by approximately two orders during the LETD process. The limit of quantifications and detections of endogenous sex steroids in human serum were measured at the ppt level. In contrast with commonly used immunoassays in clinical laboratories, LETD-APPI-MS enables the accurate measurements of multiple free sex steroids without the interference of cross-reactions. The endogenous sex steroids of 38 female serums at four physiological stages during pregnancy were rapidly tested by LETD-APPI-MS, whose results were highly consistent with that using liquid chromatography-atmospheric pressure chemical ionization mass spectrometry (LC-APCI-MS), indicating LETD-APPI-MS has a strong clinical application potential in steroid analysis.
Collapse
Affiliation(s)
- Wan Zhao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Jing Zhang
- Anhui Prevention and Treatment Center for Occupational Disease, Anhui No. 2 Provincial People's Hospital, Hefei 230041, China
| | - Airong Feng
- Instruments center for physical science, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Hao Yin
- Instruments center for physical science, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Chengyuan Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Yang Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| |
Collapse
|
7
|
Long Q, Zhang T, Yan Y, Zhao H, Zhou W, Zeng J, Li S, Zhang J, Zeng Q, Zhao B, Zhang C, Chen W. Measurement of serum 17-hydroxyprogesterone using isotope dilution liquid chromatography-tandem mass spectrometry candidate reference method and evaluation of the performance for three routine methods. Clin Chem Lab Med 2020; 59:523-532. [PMID: 33554585 DOI: 10.1515/cclm-2020-0410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 11/02/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Accurate measurements of serum 17-hydroxyprogesterone (17OHP) are essential for diagnosis and treatment monitoring for congenital adrenal hyperplasia patients. The performance of serum 17OHP routine methods remains highly variable that calls for a candidate reference measurement procedure (cRMP) to improve the standardization of serum 17OHP measurements. METHODS Serum samples spiked with internal standards were extracted with a combination of solid-phase extraction and liquid-liquid extraction. The 17OHP was quantified by the isotope dilution coupled with liquid chromatography/tandem mass spectrometry (ID-LC/MS/MS) with electrospray ionization in positive ion mode. Nine structural analogs of 17OHP were evaluated for interferences. The precision and analytical recovery were assessed. Twenty native and 40 spiked serum for performance evaluation were measured by the cRMP and two clinical LC/MS routine methods. RESULTS No apparent interferences were found with the 17OHP measurement. The within-run, between-run, and total precision for our method were 0.4-0.8%, 0.6-2.0%, and 1.0-2.1% for four pooled serum (2.46-102.72 nmol/L), respectively. The recoveries of added 17OHP were 100.0-100.2%. For the performance of two LC/MS routine methods, they showed relative deviation ranges of -22.1 to 1.1% and -6.7 to 12.8%, respectively. CONCLUSIONS We developed and validated a reliable serum 17OHP method using ID-LC/MS/MS. The desirable accuracy and precision of this method enable it to serve as a promising cRMP to improve the standardization for serum 17OHP routine measurements.
Collapse
Affiliation(s)
- Qichen Long
- National Center for Clinical Laboratories, Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Tianjiao Zhang
- National Center for Clinical Laboratories, Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Ying Yan
- National Center for Clinical Laboratories, Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Haijian Zhao
- National Center for Clinical Laboratories, Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Weiyan Zhou
- National Center for Clinical Laboratories, Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Jie Zeng
- National Center for Clinical Laboratories, Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Shuijun Li
- Central Laboratory, Shanghai Xuhui Central Hospital, Shanghai, P.R. China
| | - Jiangtao Zhang
- National Center for Clinical Laboratories, Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Qingzhang Zeng
- National Center for Clinical Laboratories, Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Beibei Zhao
- Guangzhou KingMed Diagnostics Group Co., Ltd., Guangzhou, P.R. China
| | - Chuanbao Zhang
- National Center for Clinical Laboratories, Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Wenxiang Chen
- National Center for Clinical Laboratories, Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| |
Collapse
|
8
|
Yi X, Wang Y, Zhang T, Zeng J, Zhao H, Zhou W, Zhang J, Yan Y, Chen W, Zhang C. Commutability of possible external quality assessment materials for progesterone measurement. Clin Biochem 2020; 87:39-45. [PMID: 33188771 DOI: 10.1016/j.clinbiochem.2020.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/14/2020] [Accepted: 10/23/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND The commutability of control materials used for external quality assessment (EQA) programs is of great importance. Evaluating the commutability of control materials is crucial to assess their suitability for EQA programs. METHODS Forty-eight individual patient serum samples, commercial EQA samples, human serum pools (HSPs), commercially available sterile filtered charcoal stripped serum (CS) and swine serum were analyzed using the isotope dilution liquid chromatography-tandem mass spectrometry (ID LC-MS/MS) comparative method and six immunoassays for progesterone. The commutability was assessed according to the EP14-A2 guideline and the difference in bias approach, respectively. RESULTS According to the EP14-A2 guideline, HSPs and CS were commutable for all the tested immunoassays, while swine serum showed positive matrix effects in some assays. Based on the difference in bias approach, a large number of inconclusive and noncommutable results appeared. CONCLUSIONS The commutability of the processed materials varied depending on which evaluation approach and criterion was applied. Noncommutability of the EQA materials was observed. And HSPs and CS were possible commutable candidate control materials according to the EP14-A2 guideline.
Collapse
Affiliation(s)
- Xilian Yi
- National Center for Clinical Laboratories, Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China; Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Yufei Wang
- National Center for Clinical Laboratories, Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China; Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Tianjiao Zhang
- National Center for Clinical Laboratories, Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China
| | - Jie Zeng
- National Center for Clinical Laboratories, Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China
| | - Haijian Zhao
- National Center for Clinical Laboratories, Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China
| | - Weiyan Zhou
- National Center for Clinical Laboratories, Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China
| | - Jiangtao Zhang
- National Center for Clinical Laboratories, Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China; Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Ying Yan
- National Center for Clinical Laboratories, Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China
| | - Wenxiang Chen
- National Center for Clinical Laboratories, Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China; Chinese Academy of Medical Sciences and Peking Union Medical College, PR China.
| | - Chuanbao Zhang
- National Center for Clinical Laboratories, Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China; Chinese Academy of Medical Sciences and Peking Union Medical College, PR China.
| |
Collapse
|
9
|
Mezzullo M, Pelusi C, Fazzini A, Repaci A, Di Dalmazi G, Gambineri A, Pagotto U, Fanelli F. Female and male serum reference intervals for challenging sex and precursor steroids by liquid chromatography - tandem mass spectrometry. J Steroid Biochem Mol Biol 2020; 197:105538. [PMID: 31734493 DOI: 10.1016/j.jsbmb.2019.105538] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/29/2019] [Accepted: 11/11/2019] [Indexed: 02/03/2023]
Abstract
Measuring some sex and precursor steroids is still challenging even by liquid chromatography - tandem mass spectrometry (LC-MS/MS), and few normal values are available. We developed a LC-MS/MS method for estradiol, estrone, dihydrotestosterone and 17-hydroxypregnenolone measurement, compared it with direct immunoassays, and generated sex, age, menopausal and menstrual status specific reference intervals. Liquid-liquid extraction was optimized on 300 μL serum spiked with isotopic internal standards. A 2D-LC system allowed on-line purification and separation in 11 min run. Electrospray ionization was enhanced by ammonium fluoride. MS-detection was obtained by multiple reaction monitoring. Direct ECLIA for estradiol (n = 80) and RIA for estrone (n = 41) were compared with LC-MS/MS. Reference values were estimated in healthy, lean women in reproductive age (n = 118), menopausal women (n = 33) and men (n = 159). The assay showed satisfying imprecision, trueness, recovery and selectivity. Adequate functional sensitivity was achieved for measuring estrone (18.1 pmol/L) and 17-hydroxypregnenolone (117 pmol/L) in all subjects, and estradiol (35.9 pmol/L) and dihydrotestosterone (134 pmol/L) in women in reproductive age and men, but not in menopausal women. Compared with LC-MS/MS, immunoassays showed good agreement for estradiol but severe disagreement for estrone. Estrogens exhibited sex, menopausal and menstrual variations. Dihydrotestosterone and 17-hydroxypregnenolone depended on sex and menopause, the latter also declining with age in men. Strictly defined reference intervals in the adult female and male population were generated for challenging steroids such as estrogens, dihydrotestosterone and 17-hydroxypregnenolone by a novel LC-MS/MS method. Our achievement can be used to deepen the comprehension of several endocrine diseases.
Collapse
Affiliation(s)
- Marco Mezzullo
- Endocrinology Unit and Center for Applied Biomedical Research, Department of Medical and Surgical Sciences, University of Bologna, S.Orsola Policlinic, via Massarenti 9, 40138 Bologna, Italy.
| | - Carla Pelusi
- Endocrinology Unit and Center for Applied Biomedical Research, Department of Medical and Surgical Sciences, University of Bologna, S.Orsola Policlinic, via Massarenti 9, 40138 Bologna, Italy.
| | - Alessia Fazzini
- Endocrinology Unit and Center for Applied Biomedical Research, Department of Medical and Surgical Sciences, University of Bologna, S.Orsola Policlinic, via Massarenti 9, 40138 Bologna, Italy.
| | - Andrea Repaci
- Endocrinology Unit and Center for Applied Biomedical Research, Department of Medical and Surgical Sciences, University of Bologna, S.Orsola Policlinic, via Massarenti 9, 40138 Bologna, Italy.
| | - Guido Di Dalmazi
- Endocrinology Unit and Center for Applied Biomedical Research, Department of Medical and Surgical Sciences, University of Bologna, S.Orsola Policlinic, via Massarenti 9, 40138 Bologna, Italy.
| | - Alessandra Gambineri
- Endocrinology Unit and Center for Applied Biomedical Research, Department of Medical and Surgical Sciences, University of Bologna, S.Orsola Policlinic, via Massarenti 9, 40138 Bologna, Italy.
| | - Uberto Pagotto
- Endocrinology Unit and Center for Applied Biomedical Research, Department of Medical and Surgical Sciences, University of Bologna, S.Orsola Policlinic, via Massarenti 9, 40138 Bologna, Italy.
| | - Flaminia Fanelli
- Endocrinology Unit and Center for Applied Biomedical Research, Department of Medical and Surgical Sciences, University of Bologna, S.Orsola Policlinic, via Massarenti 9, 40138 Bologna, Italy.
| |
Collapse
|