1
|
Roy KS, Nazdrajić E, Shimelis OI, Ross MJ, Chen Y, Cramer H, Pawliszyn J. Optimizing a High-Throughput Solid-Phase Microextraction System to Determine the Plasma Protein Binding of Drugs in Human Plasma. Anal Chem 2021; 93:11061-11065. [PMID: 34353028 DOI: 10.1021/acs.analchem.1c01986] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plasma protein binding refers to the binding of a drug to plasma proteins after entering the body. The measurement of plasma protein binding is essential during drug development and in clinical practice, as it provides a more detailed understanding of the available free concentration of a drug in the blood, which is in turn critical for pharmacokinetics and pharmacodynamics studies. In addition, the accurate determination of the free concentration of a drug in the blood is also highly important for therapeutic drug monitoring and in personalized medicine. The present study uses C18-coated solid-phase microextraction 96-pin devices to determine the free concentrations of a set of drugs in plasma, as well as the plasma protein binding of drugs with a wide range of physicochemical properties. It should be noted that the extracted amounts used to calculate the binding constants and plasma protein bindings should be measured at respective equilibrium for plasma and phosphate buffer. Therefore, special attention is placed on properly determining the equilibration times required to correctly estimate the free concentrations of drugs in the investigated systems. The plasma protein binding values obtained with the 96-pin devices are consistent with those reported in the literature. The 96-pin device used in this research can be easily coupled with a Concept96 or other automated robotic systems to create an automated plasma protein binding determination protocol that is both more time and labor efficient compared to conventional equilibrium dialysis and ultrafiltration methods.
Collapse
Affiliation(s)
- Kanchan Sinha Roy
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Emir Nazdrajić
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Olga I Shimelis
- MilliporeSigma, 595 N. Harrison Road, Bellefonte, Pennsylvania 16823, United States
| | - M James Ross
- MilliporeSigma, 595 N. Harrison Road, Bellefonte, Pennsylvania 16823, United States
| | - Yong Chen
- MilliporeSigma, 595 N. Harrison Road, Bellefonte, Pennsylvania 16823, United States
| | - Hugh Cramer
- MilliporeSigma, 595 N. Harrison Road, Bellefonte, Pennsylvania 16823, United States
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
2
|
Benefits of Innovative and Fully Water-Compatible Stationary Phases of Thin-Film Microextraction (TFME) Blades. Molecules 2021; 26:molecules26154413. [PMID: 34361565 PMCID: PMC8347298 DOI: 10.3390/molecules26154413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 11/25/2022] Open
Abstract
Octadecyl (C18) groups are arguably the most popular ligands used for preparation of solid phase microextraction (SPME) devices. However, conventional C18-bonded silica particles are not fully compatible with the nearly 100% aqueous composition of typical biological samples (e.g., plasma, saliva, or urine). This study presents the first evaluation of thin-film SPME devices coated with special water-compatible C18-bonded particles. Device performance was assessed by extracting a mixture of 30 model compounds that exhibited various chemical structures and properties, such as hydrophobicity. Additionally, nine unique compositions of desorption solvents were tested. Thin-film SPME devices coated with C18-bonded silica particles with polar end-capping groups (10 µm) were compared with conventional trimethylsilane end-capped C18-bonded silica particles of various sizes (5, 10, and 45 µm) and characteristics. Polar end-capped particles provided the best extraction efficacy and were characterized by the strongest correlations between the efficacy of the extraction process and the hydrophobicity of the analytes. The results suggest that the original features of octadecyl ligands are best preserved in aqueous conditions by polar end-capped particles, unlike with conventional trimethylsilane end-capped particles that are currently used to prepare SPME devices. The benefits associated with this improved type of coating encourage further implementation of microextractraction as greener alternative to the traditional sample preparation methods.
Collapse
|
3
|
Li JQ, Gao H, Zhai L, Sun LY, Chen C, Chigan JZ, Ding HH, Yang KW. Dipyridyl-substituted thiosemicarbazone as a potent broad-spectrum inhibitor of metallo-β-lactamases. Bioorg Med Chem 2021; 38:116128. [PMID: 33862468 DOI: 10.1016/j.bmc.2021.116128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 11/17/2022]
Abstract
To combat the superbug infection caused by metallo-β-lactamases (MβLs), a dipyridyl-substituted thiosemicarbazone (DpC), was identified to be the broad-spectrum inhibitor of MβLs (NDM-1, VIM-2, IMP-1, ImiS, L1), with an IC50 value in the range of 0.021-1.08 µM. It reversibly and competitively inhibited NDM-1 with a Ki value of 10.2 nM. DpC showed broad-spectrum antibacterial effect on clinical isolate K. pneumonia, CRE, VRE, CRPA and MRSA, with MIC value ranged from 16 to 32 µg/mL, and exhibited synergistic antibacterial effect with meropenem on MβLs-producing bacteria, resulting in a 2-16-, 2-8-, and 8-fold reduction in MIC of meropenem against EC-MβLs, EC01-EC24, K. pneumonia, respectively. Moreover, mice experiments showed that DpC also had synergistic antibacterial action with meropenem. In this work, DpC was identified to be a potent scaffold for the development of broad-spectrum inhibitors of MβLs.
Collapse
Affiliation(s)
- Jia-Qi Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Han Gao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Le Zhai
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 72101, Shaanxi Province, PR China
| | - Le-Yun Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Cheng Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Jia-Zhu Chigan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Huan-Huan Ding
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Ke-Wu Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China.
| |
Collapse
|
4
|
Moein MM, Halldin C. Sample preparation techniques for protein binding measurement in radiopharmaceutical approaches: A short review. Talanta 2020; 219:121220. [PMID: 32887121 DOI: 10.1016/j.talanta.2020.121220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 10/24/2022]
Abstract
Plasma protein binding (PPB) measurement is a key step in radiopharmaceutical studies for the development of positron emission tomography (PET) radioligands. PPB refers to the binding degree of a radioligand, radiotracer, or drug to blood plasma proteins or tissues after administration into the body. Several techniques have been successfully developed and applied for PPB measurement of PET radioligands. However, there is room for progress among these techniques in relation to duration time, adaptability with nonpolar radioligands, in vivo measurement, specificity, and selectivity. This mini review gives a brief overview of advances, limitations, and prospective applications of commercially-available PPB methods.
Collapse
Affiliation(s)
- Mohammad Mahdi Moein
- Karolinska Radiopharmacy, Karolinska University Hospital, S-171 64 Stockholm, Sweden; Karolinska Institutet, Department of Oncology-Pathology, J5:20, S-171 77 Stockholm, Sweden.
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| |
Collapse
|
5
|
Alcaraz R, Muñiz P, Cavia M, Palacios Ó, Samper KG, Gil-García R, Jiménez-Pérez A, García-Tojal J, García-Girón C. Thiosemicarbazone-metal complexes exhibiting cytotoxicity in colon cancer cell lines through oxidative stress. J Inorg Biochem 2020; 206:110993. [PMID: 32088593 DOI: 10.1016/j.jinorgbio.2020.110993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 01/03/2020] [Accepted: 01/05/2020] [Indexed: 02/07/2023]
Abstract
Colorectal cancer is the third most common type of cancer and has a high incidence in developed countries. At present, specific treatments are being required to allow individualized therapy depending on the molecular alteration on which the drug may act. The aim of this project is to evaluate whether HPTSC and HPTSC* thiosemicarbazones (HPTSC = pyridine-2-carbaldehyde thiosemicarbazone and HPTSC* = pyridine-2-carbaldehyde 4N-methylthiosemicarbazone), and their complexes with different transition metal ions as Cu(II), Fe(III) and Co(III), have antitumor activity in colon cancer cells (HT-29 and SW-480), that have different oncogenic characteristics. Cytotoxicity was evaluated and the involvement of oxidative stress in its mechanism of action was analyzed by quantifying the superoxide dismutase activity, redox state by quantification of the thioredoxin levels and reduced/oxidized glutathione rate and biomolecules damage. The apoptotic effect was evaluated by measurements of the levels of caspase 9 and 3 and the index of histones. All the metal-thiosemicarbazones have antitumor activity mediated by oxidative stress. The HPTSC*-Cu was the compound that showed the best antitumor and apoptotic characteristics for the cell line SW480, that is KRAS gene mutated.
Collapse
Affiliation(s)
- Raquel Alcaraz
- Unidad de Investigación, Hospital Universitario de Burgos, Avd Islas Baleares, 3, 09006 Burgos, Spain.
| | - Pilar Muñiz
- Departamento de Biotecnología y Ciencia de los Alimentos, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain.
| | - Mónica Cavia
- Departamento de Biotecnología y Ciencia de los Alimentos, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Óscar Palacios
- Departament de Química, Universitat Autònoma de Barcelona, E-08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Katia G Samper
- Departament de Química, Universitat Autònoma de Barcelona, E-08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Rubén Gil-García
- Departamento de Química, Universidad de Burgos, 09001 Burgos, Spain
| | | | | | - Carlos García-Girón
- Servicio de Oncología Médica, Hospital Universitario de Burgos, Avd Islas Baleares, 3, 09006 Burgos, Spain
| |
Collapse
|