1
|
Chandran M, Chellasamy G, Veerapandian M, Dhanasekaran B, Govindaraju S, Yun K. Instant synthesis of nitrogen-doped Ti 3C 2 MXene quantum dots for fluorescence and electrochemical dual-mode detection of norepinephrine with a portable smartphone assay. J Mater Chem B 2025; 13:642-655. [PMID: 39611331 DOI: 10.1039/d4tb01818d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Next-generation 2D materials, such as transition metal carbides and nitrides (MXenes), have received increasing attention owing to their physicochemical properties. In this study, we synthesized highly intense fluorescent materials, nitrogen-doped MXene quantum dots (N-MQDs) using an easy and less time-consuming microwave-assisted method. These N-MQDs are spherical, fluorescent, and highly sensitive materials, as confirmed by high-resolution transmission electron microscopy, atomic force microscopy, UV-visible, fluorescence, Fourier transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy, zeta potential, and contact angle measurements. The N-MQDs were used as dual probes for the fluorescence and electrochemical sensing of neurotransmitter norepinephrine (NE-0.1 to 500 μM). The sensing strategy is based on the Förster resonance energy transfer acquired by the N-MQDs, leading to fluorescence quenching at 400 nm. A new emission peak at 500 nm with color changes and NE-to-NE quinone conversion in an electrochemical reaction. Fluorescence and electrochemical analyses were revealed using the human serum sample limit of detection (LOD) values of 40 and 33 nM, respectively. For point-of-care analysis, we developed a smartphone-integrated sensor array to calculate intensity changes, and the relative red/green/blue (RGB) values were measured at different concentrations of NE. The synthesized fluorescent probe is a promising candidate for detecting NE in biofluids. It is highly selective toward NE and is suitable for the early diagnosis of neurological diseases.
Collapse
Affiliation(s)
- Murugesan Chandran
- Department of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Republic of Korea.
| | - Gayathri Chellasamy
- Department of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Republic of Korea.
| | - Mekala Veerapandian
- Department of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Republic of Korea.
| | - Barkavi Dhanasekaran
- Department of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Republic of Korea.
| | - Saravanan Govindaraju
- Department of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Republic of Korea.
| | - Kyusik Yun
- Department of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Republic of Korea.
| |
Collapse
|
2
|
Dos Santos JJS, Garcia RRP, Soares AS, de Amorim Silva EG, Neves JL, Menezes TM. Second-order scattering sensor based on the Zn 0.97La 0.03O compound for selective and stable detection of glycated albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124176. [PMID: 38513314 DOI: 10.1016/j.saa.2024.124176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Here, we presented a second-order scattering sensor based on the Zn0.97La0.03O compound (LaZnO) for selective and stable detection of glycated albumin (GA, glycemic long-term biomarker). The LaZnO sample was obtained through the co-precipitation method and then characterized using microscopic and spectroscopic techniques. Furthermore, the selectivity, molecular interference, temporal stability, and pH effects of the LaZnO SOS signal in the absence and presence of GA were investigated. The results indicate the stability of the SOS signal over more than 60 days. Assays conducted within the pH range of 5 to 8 indicate that the detection of GA remains unaffected under the given conditions. Selectivity studies show that the SOS signal of LaZnO is reduced only upon contact with GA, while interference studies show that detection is not affected by other chemical species. Additionally, the calibration curve test showed high sensitivity of the material, with a detection limit of 0.55 µg/ml. All the results suggest that LaZnO can deliver efficiency, selectivity, accuracy, and fast response as a GA biosensor, emphasizing LaZnO's usefulness in detecting protein biomarkers.
Collapse
Affiliation(s)
| | - Ramon Raudel Peña Garcia
- Graduate Program in Materials Science and Engineering, Federal University of Piauí (UFPI), Teresina 64049-550, PI, Brazil; Engineering Campus - Academic Unit of Cabo de Santo Agostinho, Federal Rural University of Pernambuco (UFRPE), Cabo de Santo Agostinho 54518-430, PE, Brazil
| | - Adriano Santana Soares
- Graduate Program in Materials Science and Engineering, Federal University of Piauí (UFPI), Teresina 64049-550, PI, Brazil
| | | | - Jorge Luiz Neves
- Department of Fundamental Chemistry, Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil
| | - Thaís Meira Menezes
- Engineering Campus - Academic Unit of Cabo de Santo Agostinho, Federal Rural University of Pernambuco (UFRPE), Cabo de Santo Agostinho 54518-430, PE, Brazil.
| |
Collapse
|
3
|
Zhang JY, Zhang Y, Zou Y, Xu ZLB, Zhang B, Ren W. Physicochemically modulated fluorescence-scattering ratiometric sensor for selective and visual detection of levodopa. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123746. [PMID: 38091648 DOI: 10.1016/j.saa.2023.123746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/08/2023] [Accepted: 12/08/2023] [Indexed: 01/13/2024]
Abstract
In this study, a facile fluorescence-scattering ratiometric sensor was designed for visual and selective detection of levodopa (LD) via a clever physicochemical modulation scheme. The alkalized products of LD can rapidly react with polyethyleneimine (PEI) to exhibit an intense blue fluorescence and decrease the second-order scattering (SOS) signal of PEI. As the concentration of LD increased, the fluorescence intensity at 420 nm increased and the SOS intensity at 675 nm decreased synchronously. Thus the fluorescence-scattering ratiometric sensor was constructed by virtue of the two simultaneously changed signals. Furthermore, red light-emitting Au nanoclusters (AuNCs) were added into the above mixture solution to enlarge the SOS signal and provide a stable red background fluorescence. The intensity ratio of fluorescence to SOS (F/(S/Sblank)) is linear dependent on CLD in the wide range of 50.0---30000.0 nM, and LD as low as 50.0 nM can be identified with the naked eye via change of fluorescence color. The developed ratiometric sensor is smart, simple and efficient, and has been applied to the convenient assay of LD in real samples. The proposed physicochemical modulation strategy provides a new and facile path for selectively and visually identifying the target from its analogues.
Collapse
Affiliation(s)
- Jin Yuan Zhang
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| | - Ying Zhang
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China.
| | - Yu Zou
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| | - Ze Li Bo Xu
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| | - Bo Zhang
- Clinical Lab, Zigong Maternal and Child Health Hospital, Zigong 643000, PR China
| | - Wang Ren
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China.
| |
Collapse
|
4
|
Zhang P, Chen L, Cai X, Luo B, Chen T, Chen H, Chen G, Li F. Fluorescence wavelength shifts combined with light scattering for ratiometric sensing of chloride in the serum based on CsPbBr 3@SiO 2 perovskite nanocrystal composite halide exchanges. Dalton Trans 2023; 52:15353-15359. [PMID: 37540044 DOI: 10.1039/d3dt01871g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
A traditional fluorescence-scattering intensity based ratiometric sensing system utilizes both inherent scattering and fluorescence intensity and has drawn extensive attention owing to its simplicity and self-calibration properties. In this work, we propose a novel ratiometric fluorescence sensing system that combines a fluorescence wavelength shift and scattering in a single window, using second-order scattering (SOS) as the representative scattering signal based on the halide exchange of CsPbBr3@SiO2 perovskite nanocrystal composites. We observe a fast halide exchange within 10 seconds, resulting in an identifiable fluorescence wavelength blue shift, while the scattering wavelength remains relatively constant for self-correction. This system could be applied for ratiometric sensing of Cl- in the serum without any sample treatment. The established wavelength-based ratiometric system demonstrates high reliability and reproducibility, paving a new way for fluorescence sensing.
Collapse
Affiliation(s)
- Peng Zhang
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, P.R. China.
| | - Liming Chen
- Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, 363000, P.R. China
| | - Xiaoyan Cai
- Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, 363000, P.R. China
| | - Binbin Luo
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, China.
| | - Tianju Chen
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, P.R. China.
| | - Haini Chen
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, P.R. China.
| | - Guoliang Chen
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, P.R. China.
| | - Feiming Li
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, P.R. China.
| |
Collapse
|
5
|
Wang BJ, Xu ZY, Sun Z, Li ZQ, Luo YH, Luo HQ, Li NB. A wide-range ratiometric sensor mediating fluorescence and scattering based on carbon dots/metal-organic framework composites for the detection of bisulfite/sulfite in sugar. Anal Bioanal Chem 2023:10.1007/s00216-023-04763-y. [PMID: 37268746 DOI: 10.1007/s00216-023-04763-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 06/04/2023]
Abstract
Bisulfite (HSO3-) and sulfite (SO32-) are commonly employed in food preservatives and are also significant environmental pollutants. Thus, developing an effective method for detecting HSO3-/SO32- is crucial for food safety and environment monitoring. In this work, based on carbon dots (CDs) and zeolitic imidazolate framework-90 (ZIF-90), a composite probe (named CDs@ZIF-90) is constructed. The fluorescence signal and the second-order scattering signal of CDs@ZIF-90 are employed to ratiometricly detect HSO3-/SO32-. This proposed strategy exhibits a broad linear range for HSO3-/SO32- determination (10 µM to 8.5 mM) with a limit of detection of 2.74 μM. This strategy is successfully applied for evaluating HSO3-/SO32- in sugar with satisfactory recoveries. Therefore, this work has uniquely combined the fluorescence and second-order scattering signals to establish a novel sensing system with a wide linear range, which is applicable for ratiometric sensing of HSO3-/SO32- in actual samples.
Collapse
Affiliation(s)
- Bing Jie Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Tiansheng Road, BeiBei District, Chongqing, 400715, People's Republic of China
| | - Zi Yi Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Tiansheng Road, BeiBei District, Chongqing, 400715, People's Republic of China
| | - Zhe Sun
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Tiansheng Road, BeiBei District, Chongqing, 400715, People's Republic of China
| | - Zi Qing Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Tiansheng Road, BeiBei District, Chongqing, 400715, People's Republic of China
| | - Yuan Hao Luo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Tiansheng Road, BeiBei District, Chongqing, 400715, People's Republic of China
| | - Hong Qun Luo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Tiansheng Road, BeiBei District, Chongqing, 400715, People's Republic of China.
| | - Nian Bing Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Tiansheng Road, BeiBei District, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
6
|
Scollo F, Seggio M, Torrisi RL, Bua RO, Zimbone M, Contino A, Maccarrone G. New fluorescent-labelled nanoparticles: synthesis, characterization and interactions with cysteine and homocysteine to evaluate their stability in aqueous solution. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-019-01241-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|