1
|
Labrador-Páez L, Casasnovas-Melián A, Junquera E, Guerrero-Martínez A, Ahijado-Guzmán R. Optical dark-field spectroscopy of single plasmonic nanoparticles for molecular biosciences. NANOSCALE 2024; 16:19192-19206. [PMID: 39351920 DOI: 10.1039/d4nr03055a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
An ideal sensor capable of quantifying analytes in minuscule sample volumes represents a significant technological advancement. Plasmonic nanoparticles integrated with optical dark-field spectroscopy have reached this capability, demonstrating versatility and expanding applicability across in vitro and in vivo subjects. This review underscores the applicability of optical dark-field spectroscopy with single plasmonic nanoparticles to elucidate a wide range of biomolecular characteristics, including binding constants, molecular dynamics, distances, and forces, as well as recording cell communication signals. Perspectives highlight the potential for the development of implantable nanosensors for metabolite detection in animal models, illustrating the technique's efficacy without the need for labeling molecules. In summary, this review aims to consolidate knowledge of this adaptable and robust technique for decoding molecular biological phenomena within the nano- and bio-scientific community.
Collapse
Affiliation(s)
- Lucía Labrador-Páez
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda Complutense s/n, 28040 Madrid, Spain.
| | - Alfredo Casasnovas-Melián
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda Complutense s/n, 28040 Madrid, Spain.
| | - Elena Junquera
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda Complutense s/n, 28040 Madrid, Spain.
| | - Andrés Guerrero-Martínez
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda Complutense s/n, 28040 Madrid, Spain.
| | - Rubén Ahijado-Guzmán
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda Complutense s/n, 28040 Madrid, Spain.
| |
Collapse
|
2
|
Yang J, Lu X, Chen M, Tang C, Wei Z, Liu Y, Jiang H, Yu P. Non-immobilized GO-SELEX screening of aptamers against cyclosporine A and its application in a AuNPs colorimetric aptasensor. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:227-236. [PMID: 38105729 DOI: 10.1039/d3ay01775c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Cyclosporine A (CsA) is an immunosuppressive drug that is widely used in clinical practice. Due to its narrow therapeutic window and the significant differences between individuals, the therapeutic drug monitoring (TDM) of CsA is required to ensure patient safety. In this study, we screened a novel aptamer, named CsA7, which could specifically recognize CsA, and developed a AuNPs colorimetric aptasensor for the rapid detection of CsA. In the SELEX process, after eight rounds of screening, four aptamer candidate sequences were obtained and subjected to binding affinity and specificity tests. Finally, the CsA7 aptamer (Kd = 41.21 ng mL-1) showed the highest affinity for CsA. Based on CsA7, we also developed a AuNPs colorimetric aptasensor, which had a detection limit of 0.1 ng mL-1 and a quantitative range of 0.1-500 ng mL-1 and showed good selectivity among CsA and its analogs. According to the results, the CsA7 aptamer provides an alternative recognition molecule to the antibody in biosensor applications and shows great potential for the rapid and convenient detection of CsA.
Collapse
Affiliation(s)
- Jie Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172, Tongzipo Road, Changsha, Hunan 410013, China.
| | - Xiaoling Lu
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172, Tongzipo Road, Changsha, Hunan 410013, China.
| | - Meilun Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172, Tongzipo Road, Changsha, Hunan 410013, China.
| | - Chunhua Tang
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172, Tongzipo Road, Changsha, Hunan 410013, China.
| | - Zheng Wei
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172, Tongzipo Road, Changsha, Hunan 410013, China.
| | - Yijie Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172, Tongzipo Road, Changsha, Hunan 410013, China.
| | - Hanbing Jiang
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172, Tongzipo Road, Changsha, Hunan 410013, China.
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 1 Traditional Chinese Medicine Hospital in Changde, Hunan Province, China
| | - Peng Yu
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172, Tongzipo Road, Changsha, Hunan 410013, China.
| |
Collapse
|
3
|
Niu M, Liang X, Zhao H, Li H, Fu X, Liu C. Bipolar hemicyanine cationic probe for simultaneous sensing of ATP and GTP. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123249. [PMID: 37579665 DOI: 10.1016/j.saa.2023.123249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/19/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023]
Abstract
Adenosine 5'-triphosphate (ATP) and guanosine 5'-triphosphate (GTP) are the most essential energy source in enormous biological processes. Various probes for ATP or GTP sensing, have been widely established, but the probe that could simultaneously monitor ATP and GTP is still rarely reported. Herein, we report a bipolar hemicyanine cationic probe for simultaneous sensing of ATP and GTP via a one-step monitoring process. This probe exhibited strong affinity to ATP and GTP through intramolecular electrostatic and π-π stacking interactions, which the binding constant on each step were determined as 6.15 × 107 M-1 and 1.57 × 106 M-1 for ATP, 3.19 × 107 M-1 and 3.81 × 106 M-1 for GTP. The sensitivity and specificity of this probe toward ATP or GTP over other twelve biological analogues (adenosine 5'-diphosphate (ADP), adenosine 5'-monophosphate (AMP), guanosine 5'-diphosphate (GDP), guanosine 5'-monophosphate (GMP), Etc.) have also been successfully demonstrated. Furthermore, due to the rapid response rate (within 10 s), we also proved that this probe could be employed as a monitor tool during the ATP or GTP-related enzymatic reaction process.
Collapse
Affiliation(s)
- Mengxing Niu
- School of Applied Engineering, Henan University of Science and Technology, Sanmenxia 472000, PR China
| | - Xiaofei Liang
- School of Music, Henan University, Kaifeng 475001, PR China
| | - Haotian Zhao
- Department of Physical Education, Jiangnan University, Wuxi 214122, PR China
| | - Huixin Li
- School of Sport Science, Beijing Sport University, Beijing 100084, PR China
| | - Xuancheng Fu
- Department of Chemistry, Syracuse University, Syracuse 13244, United States.
| | - Chang Liu
- School of Sport Science, Beijing Sport University, Beijing 100084, PR China.
| |
Collapse
|
4
|
Zhang W, Zi X, Bi J, Liu G, Cheng H, Bao K, Qin L, Wang W. Plasmonic Nanomaterials in Dark Field Sensing Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2027. [PMID: 37446543 DOI: 10.3390/nano13132027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
Plasma nanoparticles offer promise in data storage, biosensing, optical imaging, photoelectric integration, etc. This review highlights the local surface plasmon resonance (LSPR) excitation mechanism of plasmonic nanoprobes and its critical significance in the control of dark-field sensing, as well as three main sensing strategies based on plasmonic nanomaterial dielectric environment modification, electromagnetic coupling, and charge transfer. This review then describes the component materials of plasmonic nanoprobes based on gold, silver, and other noble metals, as well as their applications. According to this summary, researchers raised the LSPR performance of composite plasmonic nanomaterials by combining noble metals with other metals or oxides and using them in process analysis and quantitative detection.
Collapse
Affiliation(s)
- Wenjia Zhang
- Tianjin Research Institute of Water Transport Engineering, M.O.T., Tianjin 300456, China
- National Engineering Research Center of Port Hydraulic Construction Technology, Tianjin 300456, China
| | - Xingyu Zi
- College of Microelectronics, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350, China
| | - Jinqiang Bi
- Tianjin Research Institute of Water Transport Engineering, M.O.T., Tianjin 300456, China
- National Engineering Research Center of Port Hydraulic Construction Technology, Tianjin 300456, China
- School of Marine Science and Technology, Tianjin University, Tianjin 300192, China
| | - Guohua Liu
- College of Microelectronics, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350, China
| | - Hongen Cheng
- College of Microelectronics, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350, China
| | - Kexin Bao
- Tianjin Research Institute of Water Transport Engineering, M.O.T., Tianjin 300456, China
- National Engineering Research Center of Port Hydraulic Construction Technology, Tianjin 300456, China
- School of Marine Science and Technology, Tianjin University, Tianjin 300192, China
| | - Liu Qin
- Tianjin Research Institute of Water Transport Engineering, M.O.T., Tianjin 300456, China
- National Engineering Research Center of Port Hydraulic Construction Technology, Tianjin 300456, China
| | - Wei Wang
- Tianjin Research Institute of Water Transport Engineering, M.O.T., Tianjin 300456, China
- National Engineering Research Center of Port Hydraulic Construction Technology, Tianjin 300456, China
| |
Collapse
|
5
|
Guo Y, Sun L, Wang Y, Wang Q, Jing D, Liu S. Nanomaterials based on thermosensitive polymer in biomedical field. Front Chem 2022; 10:946183. [PMID: 36212064 PMCID: PMC9532752 DOI: 10.3389/fchem.2022.946183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/30/2022] [Indexed: 11/27/2022] Open
Abstract
The progress of nanotechnology enables us to make use of the special properties of materials on the nanoscale and open up many new fields of biomedical research. Among them, thermosensitive nanomaterials stand out in many biomedical fields because of their “intelligent” behavior in response to temperature changes. However, this article mainly reviews the research progress of thermosensitive nanomaterials, which are popular in biomedical applications in recent years. Here, we simply classify the thermally responsive nanomaterials according to the types of polymers, focusing on the mechanisms of action and their advantages and potential. Finally, we deeply investigate the applications of thermosensitive nanomaterials in drug delivery, tissue engineering, sensing analysis, cell culture, 3D printing, and other fields and probe the current challenges and future development prospects of thermosensitive nanomaterials.
Collapse
Affiliation(s)
- Yingshu Guo
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- *Correspondence: Yingshu Guo,
| | - Li Sun
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Yajing Wang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Qianqian Wang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Dan Jing
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Shiwei Liu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
6
|
Huang Y, Wang X, Wu S, Shen J, Ma W, Yang S, Fa H, Yang M, Hou C. Novel nitrogen-doped carbon dots for "turn-on" sensing of ATP based on aggregation induced emission enhancement effect. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 273:121044. [PMID: 35220051 DOI: 10.1016/j.saa.2022.121044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/06/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
In this work, a nitrogen-doped carbon dots (CDs) was successfully synthesized by hydrothermal synthesis of polyethylenimine (PEI) and citric acid. The as-prepared CDs suffered from aggregation-caused quenching (ACQ) with a high concentration, but after adding adenosine triphosphate (ATP), the CDs aggregated. The generation of aggregates caused the rotation of the surface groups on CDs and reduced the non-radiation decay. The QY of CDs in water was 9.25 %, and increased to 16.60 % and 63.38% in the addition of 100 and 1000 μM ATP. And then, the enhancement of the radiation rate led to the aggregation induced enhancement effect (AIEE). Moreover, we also found that the proportion of precursors for CDs synthesis was a key factor in the occurrence of AIEE. Therefore, such CDs would be excellent candidates as fluorescent probes for the label-free detection of ATP. Our proposed method exhibited simple and easy preparation of nanoprobe, quick response (3 min), wide range of linear rage (1-2000 μM) and eco-friendly. In addition, the method performed successfully as a "turn-on" sensor for detection of ATP in the tablet with a recovery of 100.1~106.9% and RSD below 3.5%.
Collapse
Affiliation(s)
- Yang Huang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Xianfeng Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Shangming Wu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Jinhui Shen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Wenhao Ma
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Siyi Yang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Huanbao Fa
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Mei Yang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China; College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
| | - Changjun Hou
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China; College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
7
|
Gao PF, Lei G, Huang CZ. Dark-Field Microscopy: Recent Advances in Accurate Analysis and Emerging Applications. Anal Chem 2021; 93:4707-4726. [DOI: 10.1021/acs.analchem.0c04390] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Peng Fei Gao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Gang Lei
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
8
|
Jiang XL, Liu JH, Que YT, Que YM, Hu PP, Huang CZ, Tong XY. Multifunctional Single-Layered Graphene Quantum Dots Used for Diagnosis of Mitochondrial Malfunction-Related Diseases. ACS Biomater Sci Eng 2020; 6:1727-1734. [PMID: 33455364 DOI: 10.1021/acsbiomaterials.9b01395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mitochondria are critical organelles in eukaryotes that efficiently generate adenosine 5'-triphosphate (ATP) for various biological activities, and any defect in the process of ATP synthesis may lead to mitochondrial dysfunction and directly link to a variety of medical disorders. Monitoring the ATP variations in cells is key for innovative early diagnosis of mitochondrial diseases. Herein, multifunctional single-layered graphene quantum dots (s-GQDs) with bright green emission were constructed, which exhibit strong binding affinity for ATP and good mitochondria targeting ability. Using the proposed s-GQDs, we successfully discriminated the primary smooth muscle cells isolated from the transgenic mouse (heterozygote sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) 2 C674S knock-in mouse) with mitochondrial disorders or their littermate controls, indicating s-GQDs as promising probes for the study of cell metabolism and mitochondrial malfunction-related diseases, and targeting endoplasmic reticulum stress is an effective way to modulate metabolic pathways relevant to SERCA 2 inactivity mitochondrial dysfunction.
Collapse
Affiliation(s)
- Xiao Li Jiang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China
| | - Jia Hui Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yan Ting Que
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China
| | - Yu Mei Que
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Ping Ping Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xiao Yong Tong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China
| |
Collapse
|
9
|
Proximity-enabled bidirectional enzymatic repairing amplification for ultrasensitive fluorescence sensing of adenosine triphosphate. Anal Chim Acta 2020; 1104:156-163. [PMID: 32106947 DOI: 10.1016/j.aca.2020.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/28/2019] [Accepted: 01/02/2020] [Indexed: 01/01/2023]
Abstract
A novel fluorescence sensing strategy for ultrasensitive and highly specific detection of adenosine triphosphate (ATP) has been developed by the combination of the proximity ligation assay with bidirectional enzymatic repairing amplification (BERA). The strategy relies on proximity binding-triggered the release of palindromic tail that initiates bidirectional cyclic enzymatic repairing amplification reaction with the aid of polymerase and two DNA repairing enzymes, uracil-DNA glycosylase (UDG) and endonuclease IV (Endo IV). A fluorescence-quenched hairpin probe with a palindromic tail at the 3' end is skillfully designed that functions as not only the recognition element, primer, and polymerization template for BERA but also the indicator for fluorescence signal output. On the basis of the amplification strategy, this biosensor displays excellent sensitivity and selectivity for ATP detection with an outstanding detection limit of 0.81 pM. Through simultaneously enhancing the target response signal value and reducing nonspecific background, this work deducted the background effect, and showed high sensitivity and reproducibility. Moreover, our biosensor also shows promising potential in real sample analysis. Therefore, the proximity-enabled BERA strategy indeed creates a simple and valuable fluorescence sensing platform for ATP identification and related disease diagnosis and biomedical research.
Collapse
|