1
|
Bin Islam MK, Marcus RK. Isolation and quantification of human urinary exosomes using a Tween-20 elution solvent from polyester, capillary-channeled polymer fiber columns. Anal Chim Acta 2024; 1329:343242. [PMID: 39396305 PMCID: PMC11471952 DOI: 10.1016/j.aca.2024.343242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/08/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Exosomes, a subset of extracellular vesicles (EVs), are a type of membrane-secreted vesicle essential for intercellular communication. There is a great deal of interest in developing methods to isolate and quantify exosomes to study their role in intercellular processes and as potential therapeutic delivery systems. Polyester, capillary-channeled polymer fiber columns and spin-down tips are highly efficient, low-cost means of exosome isolation. As the methodology evolves, there remain questions as to the optimum elution solvent for specific end-uses of the recovered vesicles; fundamental biochemistry, clinical diagnostics, or therapeutic vectors. RESULTS While both acetonitrile and glycerol have been proven highly successful in terms of EV recoveries in the hydrophobic interaction chromatography workflow, many biological studies entail the use of the non-ionic detergent, Tween-20, as a working solvent. Here we evaluate the use of Tween-20 as the elution solvent for the recovery of exosomes. A novel 10-min, two-step gradient elution method, employing 0.1 % v/v Tween-20, efficiently isolated EVs at a concentration of ∼1011 EV mL-1 from a 100 μL urine injection. Integration of absorbance and multi-angle light scattering detectors in standard HPLC instrumentation enables a comprehensive single-injection determination of eluted exosome concentration and sizes. Transmission electron microscopy verifies the retention of the vesicular structure of the exosomes. The micro-bicinchoninic acid protein quantification assay confirmed high-purity isolations of exosomes (∼99 % removal of background proteins) SIGNIFICANCE: The effective use of Tween-20 as an elution solvent for exosome isolation/purification using capillary-channeled polymer fiber columns adds greater versatility to the portfolio of the approach. The proposed method holds promise for a wide range of fundamental biochemistry, clinical diagnostics, and therapeutic applications, marking a significant advancement in EV-based methodologies.
Collapse
Affiliation(s)
- Md Khalid Bin Islam
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC, 29634-0973, USA
| | - R Kenneth Marcus
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC, 29634-0973, USA.
| |
Collapse
|
2
|
El Hayek T, Alnaser-Almusa OA, Alsalameh SM, Alhalabi MT, Sabbah AN, Alshehri EA, Mir TA, Mani NK, Al-Kattan K, Chinnappan R, Yaqinuddin A. Emerging role of exosomal microRNA in liver cancer in the era of precision medicine; potential and challenges. Front Mol Biosci 2024; 11:1381789. [PMID: 38993840 PMCID: PMC11236732 DOI: 10.3389/fmolb.2024.1381789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/05/2024] [Indexed: 07/13/2024] Open
Abstract
Exosomal microRNAs (miRNAs) have great potential in the fight against hepatocellular carcinoma (HCC), the fourth most common cause of cancer-related death worldwide. In this study, we explored the various applications of these small molecules while analyzing their complex roles in tumor development, metastasis, and changes in the tumor microenvironment. We also discussed the complex interactions that exist between exosomal miRNAs and other non-coding RNAs such as circular RNAs, and show how these interactions coordinate important biochemical pathways that propel the development of HCC. The possibility of targeting exosomal miRNAs for therapeutic intervention is paramount, even beyond their mechanistic significance. We also highlighted their growing potential as cutting-edge biomarkers that could lead to tailored treatment plans by enabling early identification, precise prognosis, and real-time treatment response monitoring. This thorough analysis revealed an intricate network of exosomal miRNAs lead to HCC progression. Finally, strategies for purification and isolation of exosomes and advanced biosensing techniques for detection of exosomal miRNAs are also discussed. Overall, this comprehensive review sheds light on the complex web of exosomal miRNAs in HCC, offering valuable insights for future advancements in diagnosis, prognosis, and ultimately, improved outcomes for patients battling this deadly disease.
Collapse
Affiliation(s)
- Tarek El Hayek
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | | | | | | | - Eman Abdullah Alshehri
- Tissue/Organ Bioengineering and BioMEMS Laboratory, Organ Transplant Centre of Excellence (TR&I-Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Tanveer Ahmad Mir
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Tissue/Organ Bioengineering and BioMEMS Laboratory, Organ Transplant Centre of Excellence (TR&I-Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Naresh Kumar Mani
- Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - Khaled Al-Kattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Lung Health Center Department, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Raja Chinnappan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Tissue/Organ Bioengineering and BioMEMS Laboratory, Organ Transplant Centre of Excellence (TR&I-Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | | |
Collapse
|
3
|
Wysor SK, Marcus RK. In-line coupling of capillary-channeled polymer fiber columns with optical absorbance and multi-angle light scattering detection for the isolation and characterization of exosomes. Anal Bioanal Chem 2024; 416:3325-3333. [PMID: 38592443 PMCID: PMC11106132 DOI: 10.1007/s00216-024-05283-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/15/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
Extracellular vesicles (EVs) have garnered much interest due to their fundamental role in intracellular communication and their potential utility in clinical diagnostics and as biotherapeutic vectors. Of particular relevance is the subset of EVs referred to as exosomes, ranging in size from 30 to 150 nm, which contain incredible amounts of information about their cell of origin, which can be used to track the progress of disease. As a complementary action, exosomes can be engineered with therapeutic cargo to selectively target diseases. At present, the lack of highly efficient methods of isolation/purification of exosomes from diverse biofluids, plants, and cell cultures is a major bottleneck in the fundamental biochemistry, clinical analysis, and therapeutic applications. Equally impactful, the lack of effective in-line means of detection/characterization of isolate populations, including concentration and sizing, is limiting in the applications. The method presented here couples hydrophobic interaction chromatography (HIC) performed on polyester capillary-channeled polymer (C-CP) fiber columns followed by in-line optical absorbance and multi-angle light scattering (MALS) detection for the isolation and characterization of EVs, in this case present in the supernatant of Chinese hamster ovary (CHO) cell cultures. Excellent correlation was observed between the determined particle concentrations for the two detection methods. C-CP fiber columns provide a low-cost platform (< $5 per column) for the isolation of exosomes in a 15-min workflow, with complementary absorbance and MALS detection providing very high-quality particle concentration and sizing information.
Collapse
Affiliation(s)
- Sarah K Wysor
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC, 29634-0973, USA
| | - R Kenneth Marcus
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC, 29634-0973, USA.
| |
Collapse
|
4
|
Wang W, Sun H, Duan H, Sheng G, Tian N, Liu D, Sun Z. Isolation and usage of exosomes in central nervous system diseases. CNS Neurosci Ther 2024; 30:e14677. [PMID: 38497529 PMCID: PMC10945885 DOI: 10.1111/cns.14677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/10/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND Exosomes are vesicles secreted by all types of mammalian cells. They are characterized by a double-layered lipid membrane structure. They serve as carriers for a plethora of signal molecules, including DNA, RNA, proteins, and lipids. Their unique capability of effortlessly crossing the blood-brain barrier underscores their critical role in the progression of various neurological disorders. This includes, but is not limited to, diseases such as Alzheimer's, Parkinson's, and ischemic stroke. Establishing stable and mature methods for isolating exosomes is a prerequisite for the study of exosomes and their biomedical significance. The extraction technologies of exosomes include differential centrifugation, density gradient centrifugation, size exclusion chromatography, ultrafiltration, polymer coprecipitation, immunoaffinity capture, microfluidic, and so forth. Each extraction technology has its own advantages and disadvantages, and the extraction standards of exosomes have not been unified internationally. AIMS This review aimed to showcase the recent advancements in exosome isolation techniques and thoroughly compare the advantages and disadvantages of different methods. Furthermore, the significant research progress made in using exosomes for diagnosing and treating central nervous system (CNS) diseases has been emphasized. CONCLUSION The varying isolation methods result in differences in the concentration, purity, and size of exosomes. The efficient separation of exosomes facilitates their widespread application, particularly in the diagnosis and treatment of CNS diseases.
Collapse
Affiliation(s)
- Wenjing Wang
- Beijing Chest Hospital Affiliated to Capital Medical UniversityBeijingChina
| | - Hong Sun
- Beijing Chest Hospital Affiliated to Capital Medical UniversityBeijingChina
- Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Huijuan Duan
- Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Gang Sheng
- Beijing Chest Hospital Affiliated to Capital Medical UniversityBeijingChina
| | - Na Tian
- Beijing Chest Hospital Affiliated to Capital Medical UniversityBeijingChina
| | - Dingyi Liu
- Beijing Chest Hospital Affiliated to Capital Medical UniversityBeijingChina
| | - Zhaogang Sun
- Beijing Chest Hospital Affiliated to Capital Medical UniversityBeijingChina
- Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| |
Collapse
|
5
|
Wysor SK, Marcus RK. Quantitative Recoveries of Exosomes and Monoclonal Antibodies from Chinese Hamster Ovary Cell Cultures by Use of a Single, Integrated Two-Dimensional Liquid Chromatography Method. Anal Chem 2023; 95:17886-17893. [PMID: 37995145 PMCID: PMC11095952 DOI: 10.1021/acs.analchem.3c04044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Cultured cell lines are very commonly used for the mass production of therapeutic proteins, such as monoclonal antibodies (mAbs). In particular, Chinese hamster ovary (CHO) cell lines are widely employed due to their high tolerance to variations in experimental conditions and their ability to grow in suspension or serum free media. CHO cell lines are known for their ability to produce high titers of biotherapeutic products such as immunoglobulin G (IgG). An emergent alternative means of treating diseases, such as cancer, is the use of gene therapies, wherein genetic cargo is "packaged" in nanosized vesicular structures, referred to as "vectors". One particularly attractive vector option is extracellular vesicles (EVs), of which exosomes are of greatest interest. While exosomes can be harvested from virtually any human body fluid, bovine milk, or even plants, their production in cell cultures is an attractive commercial approach. In fact, the same CHO cell types employed for mAb production also produce exosomes as a natural byproduct. Here, we describe a single integrated 2D liquid chromatography (2DLC) method for the quantitative recovery of both exosomes and antibodies from a singular sample aliquot. At the heart of the method is the use of polyester capillary-channeled polymer (C-CP) fibers as the first dimension column, wherein exosomes/EVs are captured from the supernatant sample and subsequently determined by multiangle light scattering (MALS), while the mAbs are captured, eluted, and quantified using a protein A-modified C-CP fiber column in the second dimension, all in a 10 min workflow. These efforts demonstrate the versatility of the C-CP fiber phases with the capacity to harvest both forms of therapeutics from a single bioreactor, suggesting an appreciable potential impact in the field of biotherapeutics production.
Collapse
Affiliation(s)
- Sarah K Wysor
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, South Carolina 29634-0973, United States
| | - R Kenneth Marcus
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, South Carolina 29634-0973, United States
| |
Collapse
|
6
|
Burton JB, Carruthers NJ, Stemmer PM. Enriching extracellular vesicles for mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:779-795. [PMID: 34632607 DOI: 10.1002/mas.21738] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/19/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Extracellular vesicles from plasma, other body fluids and cell culture media hold great promise in the search for biomarkers. Exosomes in particular, the vesicle type that is secreted after being produced in the endocytic pathway and having a diameter of 30-150 nm, are considered to be a conveyance for signaling molecules and, therefore, to hold valuable information regarding the health and activity status of the cells from which they are released. The vesicular nature of exosomes is central to all methods used to separate them from the highly abundant proteins in plasma and other fluids. The enrichment of the vesicles is essential for mass spectrometry-based analysis as they represent only a very small component of all plasma proteins. The progression of isolation techniques for exosomes from ultracentrifugation through chromatographic separation using hydrophobic packing materials shows that effective enrichment is possible and that high throughput approaches to exosome enrichment are achievable.
Collapse
Affiliation(s)
- Jordan B Burton
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan, USA
| | | | - Paul M Stemmer
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
7
|
Jackson KK, Marcus RK. Rapid isolation and quantification of extracellular vesicles from suspension-adapted human embryonic kidney cells using capillary-channeled polymer fiber spin-down tips. Electrophoresis 2023; 44:190-202. [PMID: 35973415 PMCID: PMC10087738 DOI: 10.1002/elps.202200149] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 02/01/2023]
Abstract
Exosomes, a subset of extracellular vesicles (EVs, 30-200-nm diameter), serve as biomolecular snapshots of their cell of origin and vehicles for intercellular communication, playing roles in biological processes, including homeostasis maintenance and immune modulation. The large-scale processing of exosomes for use as therapeutic vectors has been proposed, but these applications are limited by impure, low-yield recoveries from cell culture milieu (CCM). Current isolation methods are also limited by tedious and laborious workflows, especially toward an isolation of EVs from CCM for therapeutic applications. Employed is a rapid (<10 min) EV isolation method on a capillary-channeled polymer fiber spin-down tip format. EVs are isolated from the CCM of suspension-adapted human embryonic kidney cells (HEK293), one of the candidate cell lines for commercial EV production. This batch solid-phase extraction technique allows 1012 EVs to be obtained from only 100-µl aliquots of milieu, processed using a benchtop centrifuge. The tip-isolated EVs were characterized using transmission electron microscopy, multi-angle light scattering, absorbance quantification, an enzyme-linked immunosorbent assay to tetraspanin marker proteins, and a protein purity assay. It is believed that the demonstrated approach has immediate relevance in research and analytical laboratories, with opportunities for production-level scale-up projected.
Collapse
Affiliation(s)
- Kaylan K Jackson
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
| | - R Kenneth Marcus
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
8
|
Jackson KK, Mata C, Marcus RK. A rapid capillary-channeled polymer (C-CP) fiber spin-down tip approach for the isolation of plant-derived extracellular vesicles (PDEVs) from 20 common fruit and vegetable sources. Talanta 2023; 252:123779. [DOI: 10.1016/j.talanta.2022.123779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/18/2022] [Accepted: 07/24/2022] [Indexed: 10/15/2022]
|
9
|
Determination of the Loading Capacity and Recovery of Extracellular Vesicles Derived from Human Embryonic Kidney Cells and Urine Matrices on Capillary-Channeled Polymer (C-CP) Fiber Columns. SEPARATIONS 2022. [DOI: 10.3390/separations9090251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles (EVs) are 50–1000 nm membranous vesicles secreted from all cells that play important roles in many biological processes. Exosomes, a smaller-sized subset of EVs, have become of increasing interest in fundamental biochemistry and clinical fields due to their rich biological cargos and their roles in processes such as cell-signaling, maintaining homeostasis, and regulating cellular functions. To be implemented effectively in fundamental biochemistry and clinical diagnostics fields of study, and for their proposed use as vectors in gene therapies, there is a need for new methods for the isolation of large concentrations of high-purity exosomes from complex matrices in a timely manner. To address current limitations regarding recovery and purity, described here is a frontal throughput and recovery analysis of exosomes derived from human embryonic kidney (HEK) cell cultures and human urine specimens using capillary-channeled polymer (C-CP) fiber stationary phases via high performance liquid chromatography (HPLC). Using the C-CP fiber HPLC method for EV isolations, the challenge of recovering purified EVs from small sample volumes imparted by the traditional techniques was overcome while introducing significant benefits in processing, affordability (~5 $ per column), loading (~1012 particles), and recovery (1011–1012 particles) from whole specimens without further processing requirements.
Collapse
|
10
|
Torres-Bautista A, Torres-Acosta MA, González-Valdez J. Characterization and optimization of polymer-polymer aqueous two-phase systems for the isolation and purification of CaCo2 cell-derived exosomes. PLoS One 2022; 17:e0273243. [PMID: 36054216 PMCID: PMC9439200 DOI: 10.1371/journal.pone.0273243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/04/2022] [Indexed: 12/02/2022] Open
Abstract
Exosomes are cell-derived vesicles that present attractive characteristics such as nano size and unique structure for their use as drug delivery systems for drug therapy, biomarkers for prognostic, diagnostic and personalized treatments. So far, one of the major challenges for therapeutic applications of exosomes is the development of optimized isolation methods. In this context, aqueous two-phase systems (ATPS) have been used as an alternative method to isolate biological molecules and particles with promising expectations for exosomes. In this work, fractionation of exosomes obtained from CaCo2 cell line and culture media contaminants were individually performed in 20 polymer-polymer ATPS. The effect of design parameters such as polymer composition, molecular weight, and tie-line length (TLL) on polyethylene glycol (PEG)-Dextran, Dextran-Ficoll and PEG-Ficoll systems was studied. After partition analysis, 4 of the 20 systems presented the best exosome fractionation from contaminants under initial conditions, which were optimized via salt addition (NaCl) to a final concentration of 25 mM, to improve collection efficiency. The PEG 10,000 gmol-1 –Dextran 10,000 gmol-1 system at TLL 25% w/w with NaCl, showed the best potential isolation efficiency. Following this proposed strategy, an exosome purification factor of 2 in the top PEG-rich phase can be expected furtherly demonstrating that ATPS have the potential for the selective recovery of these promising nanovesicles.
Collapse
Affiliation(s)
- Abril Torres-Bautista
- School of Engineering and Science, Tecnológico de Monterrey, Monterrey, Nuevo León, Mexico
| | - Mario A. Torres-Acosta
- Department of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, London, England, United Kingdom
| | - José González-Valdez
- School of Engineering and Science, Tecnológico de Monterrey, Monterrey, Nuevo León, Mexico
- * E-mail:
| |
Collapse
|
11
|
Jackson KK, Powell RR, Marcus RK, Bruce TF. Comparison of the capillary-channeled polymer (C-CP) fiber spin-down tip approach to traditional methods for the isolation of extracellular vesicles from human urine. Anal Bioanal Chem 2022; 414:3813-3825. [PMID: 35412060 DOI: 10.1007/s00216-022-04023-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/24/2022] [Accepted: 03/15/2022] [Indexed: 12/15/2022]
Abstract
Capillary-channeled polymer fiber (C-CP) solid-phase extraction tips have demonstrated the ability to produce clean and concentrated extracellular vesicle (EV) recoveries from human urine samples in the small EV size range (< 200 nm). An organic modifier-assisted hydrophobic interaction chromatography (HIC) approach is applied in the spin-tip method under non-denaturing conditions-preserving the structure and bioactivity of the recovered vesicles. The C-CP tip method can employ either acetonitrile or glycerol as an elution modifier. The EV recoveries from the C-CP tip method (using both of these solvents) were compared to those obtained using the ultracentrifugation (UC) and polymer precipitation (exoEasy and ExoQuick) EV isolation methods for the same human urine specimen. The biophysical and quantitative characteristics of the recovered EVs using the five isolation methods were assessed based on concentration, size distribution, shape, tetraspanin surface marker protein content, and purity. In comparison to the traditionally used UC method and commercially available polymeric precipitation-based isolation kits, the C-CP tip introduces significant benefits with efficient (< 15 min processing of 12 samples here) and low-cost (< $1 per tip) EV isolations, employing sample volumes (10 µL-1 mL) and concentration (up to 4 × 1012 EVs mL-1) scales relevant for fundamental and clinical analyses. Recoveries of the target vesicles versus matrix proteins were far superior for the tip method versus the other approaches.
Collapse
Affiliation(s)
- Kaylan K Jackson
- Department of Chemistry, Clemson University, Clemson, SC, 29634, USA
| | - Rhonda R Powell
- Clemson Light Imaging Facility, Clemson University, Clemson, SC, 29634, USA
| | - R Kenneth Marcus
- Department of Chemistry, Clemson University, Clemson, SC, 29634, USA
| | - Terri F Bruce
- Department of Bioengineering, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
12
|
Huang S, McClain RT, Marcus RK. Comparison of the separation of proteins of wide-ranging molecular weight via trilobal polypropylene capillary-channeled polymer fiber, commercial superficiously porous, and commercial size exclusion columns. J Sep Sci 2022; 45:1502-1513. [PMID: 35172038 DOI: 10.1002/jssc.202100891] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 11/06/2022]
Abstract
Reversed phase and size-exclusion chromatography methods are commonly used for protein separations, though based on distinctly different principles. Reversed phase methods yield hydrophobicity-based (loosely-termed) separation of proteins on porous supports, but tend to be limited to proteins with modest molecular weights based on mass transfer limitations. Alternatively, size-exclusion provides complementary benefits in the separation of higher-mass proteins based on entropic, not enthalpic, processes, but tend to yield limited peak capacities. In this study, microbore columns packed with a novel trilobal polypropylene capillary-channeled polymer fiber were used in a reversed phase modality for the separation of polypeptides and proteins of molecular weights ranging from 1.4 to 660 kDa. Chromatographic parameters including gradient times, flow rates and trifluoroacetic acid concentrations in the mobile phase were optimized to maximize resolution and throughput. Following optimization, the performance of the trilobal fiber column was compared to two commercial-sourced columns, a superficially porous C4-derivatized silica and size exclusion, both of which are sold specifically for protein separations and operated according to the manufacturer-specified conditions. In comparison to the commercial columns, the fiber-based column yielded better separation performance across the entirety of the suite, at much lower cost and shorter separation times. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sisi Huang
- Department of Chemistry, Biosystems Research Complex, Clemson University, 29634, Clemson, SC
| | - Ray T McClain
- Vaccine Analytical Research & Development, Merck & Co. Inc., West Point, PA, 19486, USA
| | - R Kenneth Marcus
- Department of Chemistry, Biosystems Research Complex, Clemson University, 29634, Clemson, SC
| |
Collapse
|
13
|
Liu X, Zong Z, Liu X, Li Q, Li A, Xu C, Liu D. Stimuli-Mediated Specific Isolation of Exosomes from Blood Plasma for High-Throughput Profiling of Cancer Biomarkers. SMALL METHODS 2022; 6:e2101234. [PMID: 35174989 DOI: 10.1002/smtd.202101234] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/17/2021] [Indexed: 06/14/2023]
Abstract
Exosomes, ranging from 30-150 nm in diameter, have emerged as promising non-invasive biomarkers for the diagnosis and prognosis of numerous diseases. However, current research on exosomes is largely restricted by the lack of an efficient method to isolate exosomes from real samples. Herein, the first stimuli-mediated enrichment and purification system to selectively and efficiently extract exosomes from clinical plasma for high-throughput profiling of exosomal mRNAs as cancer biomarkers is presented. This novel isolation system relies on specific installation of the stimuli-responsive copolymers onto exosomal phospholipid bilayers, by which the enrichment and purification are exclusively achieved for exosomes rather than the non-vesicle counterparts co-existing in real samples. The stimuli-mediated isolation system outperforms conventional methods such as ultracentrifugation and polyethylene glycol-based precipitation in terms of isolation yield, purity, and retained bioactivity. The high performance of the isolation system is demonstrated by enriching exosomes from 77 blood plasma samples and validated the clinical potentials in profiling exosomal mRNAs for cancer diagnosis and discrimination with high accuracy. This simple isolation system can boost the development of extracellular vesicle research, not limited to exosomes, in both basic and clinical settings.
Collapse
Affiliation(s)
- Xuehui Liu
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhiyou Zong
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xinzhuo Liu
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Qiang Li
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Ang Li
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chen Xu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin Institute of Coloproctology, Tianjin, 300000, China
| | - Dingbin Liu
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
14
|
Zhu J, Zhang J, Ji X, Tan Z, Lubman DM. Column-based Technology for CD9-HPLC Immunoaffinity Isolation of Serum Extracellular Vesicles. J Proteome Res 2021; 20:4901-4911. [PMID: 34473505 DOI: 10.1021/acs.jproteome.1c00549] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Serum-derived extracellular vesicles (EVs) are a promising source of biomarkers; however, major challenges in EV separation and proteomic profiling remain for isolating EVs from a small amount, that is, on the microliter scale, of human serum while minimizing the contamination of blood proteins and lipoprotein particles coeluting in EV preparations. Herein we have developed a column-based CD9-antibody-immobilized high-performance liquid chromatography immunoaffinity chromatography(CD9-HPLC-IAC) technology for EV isolation from a microliter scale of serum for downstream proteomic analysis. The CD9-HPLC-IAC method achieved EV isolation from 40 μL of serum in 30 min with a yield of 8.0 × 109 EVs, where EVs were further processed with a postcolumn cleaning step using the 50 kDa molecular weight cut-off filter for the buffer exchange, concentration, and reduction of potentially coeluting serum proteins. In total, 482 proteins were identified in EVs by using liquid chromatography tandem mass spectrometry, including the common exosomal markers such as CD63, CD81, CD82, Alix, and TSG101. The statistical analysis of EV protein content showed that the top 10 serum proteins in EVs were significantly decreased by using the CD9-HPLC-IAC method compared with the use of ultracentrifugation (p = 0.001) and size exclusion chromatography (p = 0.009), and apolipoproteins were significantly reduced 4.8-fold compared with the SEC method (p < 0.001). The result demonstrates the potential of the CD9-HPLC-IAC method for the efficient isolation and proteomic characterization of EVs from a microscale volume of serum.
Collapse
Affiliation(s)
- Jianhui Zhu
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| | - Jie Zhang
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| | - Xiaohui Ji
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States.,Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Zhijing Tan
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| | - David M Lubman
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
15
|
Jackson KK, Powell RR, Bruce TF, Marcus RK. Rapid isolation of extracellular vesicles from diverse biofluid matrices via capillary-channeled polymer fiber solid-phase extraction micropipette tips. Analyst 2021; 146:4314-4325. [PMID: 34105528 DOI: 10.1039/d1an00373a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Extracellular vesicles (EVs) play essential roles in biological systems based on their ability to carry genetic and protein cargos, intercede in cellular communication and serve as vectors in intercellular transport. As such, EVs are species of increasing focus from the points of view of fundamental biochemistry, clinical diagnostics, and therapeutics delivery. Of particular interest are 30-200 nm EVs called exosomes, which have demonstrated high potential for use in diagnostic and targeted delivery applications. The ability to collect exosomes from patient biofluid samples would allow for comprehensive yet remote diagnoses to be performed. While several exosome isolation methods are in common use, they generally produce low recoveries, whose purities are compromised by concomitant inclusion of lipoproteins, host cell proteins, and protein aggregates. Those methods often work on lengthy timescales (multiple hours) and result in very low throughput. In this study, capillary-channeled polymer (C-CP) fiber micropipette tips were employed in a hydrophobic interaction chromatography (HIC) solid-phase extraction (SPE) workflow. Demonstrated is the isolation of exosomes from human urine, saliva, cervical mucus, serum, and goat milk matrices. This method allows for quick (<15 min) and low-cost (<$1 per tip) isolations at sample volume and time scales relevant for clinical applications. The tip isolation was evaluated using absorbance (scattering) detection, nanoparticle tracking analysis (NTA), and transmission electron microscopy (TEM). Exosome purity was assessed by Bradford assay, based on the removal of free proteins. An enzyme-linked immunosorbent assay (ELISA) to the CD81 tetraspanin protein was used to confirm the presence of the known exosomal-biomarker on the vesicles.
Collapse
Affiliation(s)
- Kaylan K Jackson
- Clemson University, Department of Chemistry, Clemson, SC 29634, USA.
| | - Rhonda R Powell
- Clemson University, Clemson Light Imaging Facility, Clemson, SC 29634, USA
| | - Terri F Bruce
- Clemson University, Department of Bioengineering, Clemson, SC 29634, USA
| | - R Kenneth Marcus
- Clemson University, Department of Chemistry, Clemson, SC 29634, USA.
| |
Collapse
|
16
|
Huang S, Ji X, Jackson KK, Lubman DM, Ard MB, Bruce TF, Marcus RK. Rapid separation of blood plasma exosomes from low-density lipoproteins via a hydrophobic interaction chromatography method on a polyester capillary-channeled polymer fiber phase. Anal Chim Acta 2021; 1167:338578. [PMID: 34049630 DOI: 10.1016/j.aca.2021.338578] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/12/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022]
Abstract
Exosomes are membrane-bound, cell-secreted vesicles, with sizes ranging from 30 to 150 nm. Exosomes in blood plasma have become proposed targets as measurable indicators of disease conditions. Current methods for plasma-based exosome isolation are time-consuming, complex, and have high operational costs. One of the most commonly reported shortcomings of current isolation protocols is the co-extraction of lipoproteins (e.g. low-density lipoproteins, LDLs) with the target exosomes. This report describes the use of a rapid, single-operation hydrophobic interaction chromatography (HIC) procedure on a polyester (PET) capillary-channeled polymer (C-CP) fiber column, demonstrating the ability to efficiently purify exosomes. The method has previously been demonstrated for isolation of exosomes from diverse biological matrices, but questions were raised about the potential co-elution of LDLs. In the method described herein, a step-gradient procedure sequentially elutes spiked lipoproteins and blood plasma-originating exosomes in 10 min, with the LDLs excluded from the desired exosome fraction. Mass spectrometry (MS) was used to characterize an impurity in the primary LDL material, identifying the presence of exosomal material. Transmission electron microscopy (TEM) and an enzyme-linked immunosorbent assay (ELISA) were used to identify the various elution components. The method serves both as a rapid means of high purity exosome isolation as well as a screening tool for the purity of LDL samples with respect to extracellular vesicles.
Collapse
Affiliation(s)
- Sisi Huang
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC, 29634, USA
| | - Xiaohui Ji
- Department of Surgery, Medical Science Research Building I, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kaylan K Jackson
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC, 29634, USA
| | - David M Lubman
- Department of Surgery, Medical Science Research Building I, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mary B Ard
- Georgia Electron Microscopy Core Facility, University of Georgia Athens, GA, 30602, USA
| | - Terri F Bruce
- Department of Bioengineering, Life Sciences Facility, Clemson University, Clemson, SC, 29634, USA
| | - R Kenneth Marcus
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
17
|
Huang S, Bruce TF, Ding H, Wei Y, Marcus RK. Rapid isolation of lentivirus particles from cell culture media via a hydrophobic interaction chromatography method on a polyester, capillary-channeled polymer fiber stationary phase. Anal Bioanal Chem 2021; 413:2985-2994. [PMID: 33608753 DOI: 10.1007/s00216-021-03232-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 11/26/2022]
Abstract
Lentiviruses are increasingly used as gene delivery vehicles for vaccines and immunotherapies. However, the purification of clinical-grade lentivirus vectors for therapeutic use is still troublesome and limits preclinical and clinical experiments. Current purification methods such as ultracentrifugation and ultrafiltration are time consuming and do not remove all of the impurities such as cellular debris, membrane fragments, and denatured proteins from the lentiviruses. The same challenges exist in terms of their analytical characterization. Presented here is the novel demonstration of the chromatographic isolation of virus particles from culture media based on the hydrophobicity characteristics of the vesicles. A method was developed to isolate lentivirus from media using a hydrophobic interaction chromatography (HIC) method performed on a polyester, capillary-channeled polymer (PET C-CP) stationary phase and a standard liquid chromatography apparatus. The method is an extension of the approach developed in this laboratory for the isolation of extracellular vesicles (EVs). Quantitative polymerase chain reaction (qPCR) was used to verify and quantify lentiviruses in elution fractions. Load and elution mobile phase compositions were optimized to affect high efficiency and throughput. The process has been visualized via scanning electron microscopy (SEM) of the fiber surfaces following media injection, the elution of proteinaceous material, and the elution of lentiviruses. This effort has yielded a rapid (<10 min), low-cost (< $15 per column, providing multiple separations), and efficient method for the isolation/purification of lentivirus particles from cell culture media at the analytical scale.
Collapse
Affiliation(s)
- Sisi Huang
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC, 29634, USA
| | - Terri F Bruce
- Department of Bioengineering, Life Sciences Facility, Clemson University, Clemson, SC, 29634, USA
| | - Hui Ding
- Department of Biological Sciences, Life Sciences Facility, Clemson University, Clemson, SC, 29634, USA
| | - Yanzhang Wei
- Department of Biological Sciences, Life Sciences Facility, Clemson University, Clemson, SC, 29634, USA
| | - R Kenneth Marcus
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
18
|
|
19
|
Ji X, Huang S, Zhang J, Bruce TF, Tan Z, Wang D, Zhu J, Marcus RK, Lubman DM. A novel method of high-purity extracellular vesicle enrichment from microliter-scale human serum for proteomic analysis. Electrophoresis 2021; 42:245-256. [PMID: 33169421 PMCID: PMC8018574 DOI: 10.1002/elps.202000223] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 01/02/2023]
Abstract
We have developed a rapid, low-cost, and simple separation strategy to separate extracellular vesicles (EVs) from a small amount of serum (i.e.,<100 μL) with minimal contamination by serum proteins and lipoprotein particles to meet the high purity requirement for EV proteome analysis. EVs were separated by a novel polyester capillary channel polymer (PET C-CP) fiber phase/hydrophobic interaction chromatography (HIC) method which is rapid and can process small size samples. The collected EV fractions were subjected to a post-column cleanup protocol using a centrifugal filter to perform buffer exchange and eliminate potential coeluting non-EV proteins while minimizing EV sample loss. Downstream characterization demonstrated that our current strategy can separate EVs with the anticipated exosome-like particle size distribution and high yield (∼1 × 1011 EV particles per mL of serum) in approximately 15 min. Proteome profiling of the EVs reveals that a group of genuine EV components were identified that have significantly less high-abundance blood proteins and lipoprotein particle contamination in comparison to traditional separation methods. The use of this methodology appears to address the major challenges facing EV separation for proteomics analysis. In addition, the EV post-column cleanup protocol proposed in the current work has the potential to be combined with other separation methods, such as ultracentrifugation (UC), to further purify the separated EV samples.
Collapse
Affiliation(s)
- Xiaohui Ji
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, P. R. China
| | - Sisi Huang
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC, USA
| | - Jie Zhang
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Terri F. Bruce
- Department of Bioengineering, Life Sciences Facility, Clemson University, Clemson, SC, USA
| | - Zhijing Tan
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Donglin Wang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, P. R. China
| | - Jianhui Zhu
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - R. Kenneth Marcus
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC, USA
| | - David M. Lubman
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| |
Collapse
|
20
|
Liangsupree T, Multia E, Riekkola ML. Modern isolation and separation techniques for extracellular vesicles. J Chromatogr A 2020; 1636:461773. [PMID: 33316564 DOI: 10.1016/j.chroma.2020.461773] [Citation(s) in RCA: 256] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) are heterogenous membrane-bound vesicles released from various origins. EVs play a crucial role in cellular communication and mediate several physiological and pathological processes, highlighting their potential therapeutic and diagnostic applications. Due to the rapid increase in interests and needs to elucidate EV properties and functions, numerous isolation and separation approaches for EVs have been developed to overcome limitations of conventional techniques, such as ultracentrifugation. This review focuses on recently emerging and modern EV isolation and separation techniques, including size-, charge-, and affinity-based techniques while excluding ultracentrifugation and precipitation-based techniques due to their multiple limitations. The advantages and drawbacks of each technique are discussed together with insights into their applications. Emerging approaches all share similar features in terms of being time-effective, easy-to-operate, and capable of providing EVs with suitable and desirable purity and integrity for applications of interest. Combination and hyphenation of techniques have been used for EV isolation and separation to yield EVs with the best quality. The most recent development using an automated on-line system including selective affinity-based trapping unit and asymmetrical flow field-flow fractionation allows reliable isolation and fractionation of EV subpopulations from human plasma.
Collapse
Affiliation(s)
| | - Evgen Multia
- Department of Chemistry, P.O. Box 55, FI-00014 University of Helsinki, Finland
| | | |
Collapse
|
21
|
Zhao G, Ge Y, Zhang C, Zhang L, Xu J, Qi L, Li W. Progress of Mesenchymal Stem Cell-Derived Exosomes in Tissue Repair. Curr Pharm Des 2020; 26:2022-2037. [PMID: 32310043 DOI: 10.2174/1381612826666200420144805] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 03/25/2020] [Indexed: 12/17/2022]
Abstract
Mesenchymal stem cells (MSCs) are a kind of adult stem cells with self-replication and multidirectional differentiation, which can differentiate into tissue-specific cells under physiological conditions, maintaining tissue self-renewal and physiological functions. They play a role in the pathological condition by lateral differentiation into tissue-specific cells, replacing damaged tissue cells by playing the role of a regenerative medicine , or repairing damaged tissues through angiogenesis, thereby, regulating immune responses, inflammatory responses, and inhibiting apoptosis. It has become an important seed cell for tissue repair and organ reconstruction, and cell therapy based on MSCs has been widely used clinically. The study found that the probability of stem cells migrating to the damaged area after transplantation or differentiating into damaged cells is very low, so the researchers believe the leading role of stem cell transplantation for tissue repair is paracrine secretion, secreting growth factors, cytokines or other components. Exosomes are biologically active small vesicles secreted by MSCs. Recent studies have shown that they can transfer functional proteins, RNA, microRNAs, and lncRNAs between cells, and greatly reduce the immune response. Under the premise of promoting proliferation and inhibition of apoptosis, they play a repair role in tissue damage, which is caused by a variety of diseases. In this paper, the biological characteristics of exosomes (MSCs-exosomes) derived from mesenchymal stem cells, intercellular transport mechanisms, and their research progress in the field of stem cell therapy are reviewed.
Collapse
Affiliation(s)
- Guifang Zhao
- School of Basic Medical Sciences, Jilin Medical University, Jilin 132013, China.,Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangzhou Province, China
| | - Yiwen Ge
- School of Basic Medical Sciences, Jilin Medical University, Jilin 132013, China
| | - Chenyingnan Zhang
- School of Basic Medical Sciences, Jilin Medical University, Jilin 132013, China
| | - Leyi Zhang
- School of Pharmacy, Jilin Medical University, Jilin 132013, China
| | - Junjie Xu
- School of Basic Medical Sciences, Jilin Medical University, Jilin 132013, China
| | - Ling Qi
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangzhou Province, China.,School of Basic Medical Sciences, Department of Pathophysiology, Jilin Medical University, Jilin 132013, China
| | - Wenliang Li
- School of Pharmacy, Jilin Medical University, Jilin 132013, China
| |
Collapse
|
22
|
Jackson KK, Powell RR, Bruce TF, Marcus RK. Solid-phase extraction of exosomes from diverse matrices via a polyester capillary-channeled polymer (C-CP) fiber stationary phase in a spin-down tip format. Anal Bioanal Chem 2020; 412:4713-4724. [PMID: 32468278 PMCID: PMC8825614 DOI: 10.1007/s00216-020-02728-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 12/17/2022]
Abstract
Exosomes, a subset of the extracellular vesicle (EV) group of organelles, hold great potential for biomarker detection, therapeutics, disease diagnosis, and personalized medicine applications. The promise and potential of these applications are hindered by the lack of an efficient means of isolation, characterization, and quantitation. Current methods for exosome and EV isolation (including ultracentrifugation, microfiltration, and affinity-based techniques) result in impure recoveries with regard to remnant matrix species (e.g., proteins, genetic material) and are performed on clinically irrelevant time and volume scales. To address these issues, a polyethylene terephthalate (PET) capillary-channeled polymer (C-CP) fiber stationary phase is employed for the solid-phase extraction (SPE) of EVs from various matrices using a micropipette tip-based format. The hydrophobic interaction chromatography (HIC) processing and a spin-down workflow are carried out using a table-top centrifuge. Capture and subsequent elution of intact, biologically active exosomes are verified via electron microscopy and bioassays. The performance of this method was evaluated by capture and elution of exosome standards from buffer solution and three biologically relevant matrices: mock urine, reconstituted non-fat milk, and exosome-depleted fetal bovine serum (FBS). Recoveries were evaluated using UV-Vis absorbance spectrophotometry and ELISA assay. The dynamic binding capacity (50%) for the 1-cm-long (~ 5 μL bed volume) tips was determined using a commercial exosome product, yielding a value of ~ 7 × 1011 particles. The novel C-CP fiber spin-down tip approach holds promise for the isolation of exosomes and other EVs from various matrices with high throughput, low cost, and high efficiency. Graphical abstract.
Collapse
Affiliation(s)
- Kaylan K Jackson
- Department of Chemistry, Clemson University, Clemson, SC, 29634, USA
| | - Rhonda R Powell
- Clemson Light Imaging Facility, Clemson University, Clemson, SC, 29634, USA
| | - Terri F Bruce
- Department of Bioengineering, Clemson University, Clemson, SC, 29634, USA
| | - R Kenneth Marcus
- Department of Chemistry, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
23
|
Huang S, Wang L, Bruce TF, Marcus RK. Evaluation of exosome loading characteristics in their purification via a glycerol-assisted hydrophobic interaction chromatography method on a polyester, capillary-channeled polymer fiber phase. Biotechnol Prog 2020; 36:e2998. [PMID: 32246744 DOI: 10.1002/btpr.2998] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/23/2020] [Accepted: 03/28/2020] [Indexed: 12/19/2022]
Abstract
Exosomes are membrane-secreted vesicles, with sizes ranging from 30 to 150 nm, which play key roles in intercellular communication. There is intense interest in developing methods to isolate and quantify exosomes toward clinical diagnostics, fundamental studies of intercellular processes, and use of exosomes as delivery vehicles for therapeutic agents. Current methods for exosomes isolation and quantification are time consuming and have operational high costs; few combine isolation and quantification into a singular operation unit. This report describes the use of hydrophobic interaction chromatography on a polyester capillary-channeled polymer fiber column, employing a step gradient for exosome elution, including use of glycerol as a solvent modifier. The entire procedure is completed in 8 min, while maintaining the structural integrity and biological activity of the isolated exosomes. Electron microscopy was used to verify the size and structural fidelity of single exosomes. Absorbance response curves for a commercial exosome sample were used for exosome quantification in the chromatographic separations. In order to determine the dynamic loading capacity for exosomes, different volumes of Dictyostelium discoideum cell culture milieu supernatant were loaded at different column lengths (5-30 cm) and loading flow rates (0.2-0.5 ml/min). A loading capacity of 5.4 × 1012 exosomes derived from D. discoideum milieu was obtained on a 0.8 × 300 mm column; yielding recoveries of over 80%. It is believed that this isolation and purification strategy holds many advantages toward the use of exosomes across a wide breadth of medical and biotechnology applications.
Collapse
Affiliation(s)
- Sisi Huang
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, South Carolina, USA
| | - Lei Wang
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, South Carolina, USA
| | - Terri F Bruce
- Department of Bioengineering, Life Sciences Facility, Clemson University, Clemson, South Carolina, USA
| | - R Kenneth Marcus
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
24
|
Thongboonkerd V. Roles for Exosome in Various Kidney Diseases and Disorders. Front Pharmacol 2020; 10:1655. [PMID: 32082158 PMCID: PMC7005210 DOI: 10.3389/fphar.2019.01655] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022] Open
Abstract
Exosome is a nanoscale vesicle with a size range of 30–100 nm. It is secreted from cell to extracellular space by exocytosis after fusion of multivesicular body (MVB) (formed by endocytic vesicles) with plasma membrane. Exosome plays several important roles in cellular homeostasis and intercellular communications. During the last two decades, exosome has acquired a wide attention to explore its additional roles in various aspects of cell biology and function in several organ systems. For the kidney, several lines of evidence have demonstrated 1that exosome is involved in the renal physiology and pathogenic mechanisms of various kidney diseases/disorders. This article summarizes roles of the exosome as the potential source of biomarkers, pathogenic molecules, and therapeutic biologics that have been extensively investigated in many kidney diseases/disorders, including lupus nephritis (LN), other glomerular diseases, acute kidney injury (AKI), diabetic nephropathy (DN), as well as in the process of renal fibrosis and chronic kidney disease (CKD) progression, in addition to polycystic kidney disease (PKD), kidney transplantation, and renal cell carcinoma (RCC). Moreover, the most recent evidence has shown its emerging role in kidney stone disease (or nephrolithiasis), involving inflammasome activation and inflammatory cascade frequently found in kidney stone pathogenesis.
Collapse
Affiliation(s)
- Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
25
|
Wang L, Bruce TF, Huang S, Marcus RK. Isolation and quantitation of exosomes isolated from human plasma via hydrophobic interaction chromatography using a polyester, capillary-channeled polymer fiber phase. Anal Chim Acta 2019; 1082:186-193. [PMID: 31472708 DOI: 10.1016/j.aca.2019.07.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 01/10/2023]
Abstract
Exosomes are one class of extracellular vesicles (30-150 nm diameter) that are secreted by cells. These small vesicles hold a great deal of promise in disease diagnostics, as they display the same protein biomarkers as their originating cell. On a cellular level, exosomes are attributed to playing a key role in intercellular communication, and may eventually be exploited for targeted drug delivery. In order for exosomes to become useful in disease diagnostics, and as burgeoning drug delivery platforms, they must be isolated efficiently and effectively without compromising their structure. Plasma from peripheral blood is an excellent source of exosomes, as it is easily collected and the process does not normally cause undue discomfort to the patient. Unfortunately, blood plasma content is complex, containing abundant amounts of soluble proteins and aggregates, making exosomes extremely difficult to isolate in high purity from plasma. Most current exosome isolation methods have practical challenges including being too time-consuming and labor intensive, destructive to the exosomes, or too costly for use in clinical settings. To this end, this study examines the use of poly(ethylene terephthalate) (PET) capillary-channeled polymer (C-CP) fibers in a hydrophobic interaction chromatography (HIC) protocol to isolate exosomes from a human plasma sample. Initial results demonstrate the ability to isolate exosomes with comparable yields and size distributions and on a much faster time scale when compared to traditional isolation methods, while also alleviating concomitant proteins and other impurities. As a demonstration of the potential quantitative utility of the approach, a linear response (particles injected on-column vs peak area) using a commercial exosome standard was established using a standard UV absorbance detector. Based on the calibration function, the concentration of the original human plasma sample was determined and subsequently confirmed by NTA measurement. The potential for scalable separations covering sub-milliliter spin-down solid phase extraction tips to the preparative scale is anticipated.
Collapse
Affiliation(s)
- Lei Wang
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC, 29634, USA
| | - Terri F Bruce
- Department of Bioengineering, Life Sciences Facility, Clemson University, Clemson, SC, 29634, USA
| | - Sisi Huang
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC, 29634, USA
| | - R Kenneth Marcus
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|