1
|
Zhang Q, Liu A, Song X, Xu S, Da L, Lin D, Jiang C. Ultrasensitive Fluorescent Microsensors Based on Aptamers Modified with SYBR Green I for Visual Quantitative Detection of Organophosphate Pesticides. Anal Chem 2024; 96:9636-9642. [PMID: 38808501 DOI: 10.1021/acs.analchem.4c01307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Organophosphate pesticides (OPs) are widely utilized in agricultural production, and the residues threaten public health and environmental safety due to their toxicity. Herein, a novel and simple DNA aptamer-based sensor has been fabricated for the rapid, visual, and quantitative detection of profenofos and isocarbophos. The proposed DNA aptamers with a G-quadruplex spatial structure could be recognized by SYBR Green I (SG-I), resulting in strong green fluorescence emitted by SG-I. The DNA aptamers exhibit a higher specific binding ability to target OP molecules through aromatic ring stacking, disrupting the interaction between SG-I and DNA aptamers to induce green fluorescence quenching. Meanwhile, the fluorescence wavelength of G-quadruplex fluorescence emission peaks changes, accompanied by an obvious fluorescence variation from green to blue. SG-I-modified aptasensor without any additive reference fluorescence units for use in multicolor fluorescence assay for selective monitoring of OPs was first developed. The developed aptasensor provides a favorable linear range from 0 to 200 nM, with a low detection limit of 2.48 and 3.01 nM for profenofos and isocarbophos, respectively. Moreover, it offers high selectivity and stability in real sample detection with high recoveries. Then, a self-designed portable smartphone sensing platform was successfully used for quantitative result outputs, demonstrating experience in designing a neotype sensing strategy for point-of-care pesticide monitoring.
Collapse
Affiliation(s)
- Qianru Zhang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan, Anhui 232038, China
| | - Anqi Liu
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Xin Song
- Hefei Public Security Bureau, Hefei, Anhui 230001, China
| | - Shihao Xu
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Liangguo Da
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan, Anhui 232038, China
| | - Dan Lin
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Changlong Jiang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| |
Collapse
|
2
|
Zhao Z, Cao M, Wei D, Li X, Wang M, Zhai W. Constructing graphene oxide/Au nanoparticle cellulose membranes for SERS detection of mixed pesticide residues in edible chrysanthemum. Analyst 2024; 149:1151-1159. [PMID: 38259149 DOI: 10.1039/d3an02030d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Edible chrysanthemum is widely cultivated and used as an important ingredient of medicine, tea and multifunctional food. During the planting of chrysanthemum, pesticides are extensively used for preventing plant diseases and insect pests. To ensure the food safety of edible chrysanthemum, rapid detection methods are urgently needed for on-site inspection. In this study, a graphene oxide/Au nanoparticle (GO/Au NP) cellulose substrate was prepared through layer-by-layer assembly of GO and Au NPs on a mixed cellulose ester membrane. Surface-enhanced Raman spectroscopy (SERS) detection of four types of organophosphorus and organosulfur pesticides was achieved by filtering the extracting solution through the substrate and analysing SERS spectra. Qualitative and semi-quantitative detection of fenthion, phoxim, isocarbophos and thiram was accomplished with the detection limits of 38.01, 8.13, 48.97 and 8.74 ng mL-1, respectively. A spiking experiment further demonstrated the feasibility of this method for rapid and on-site detection of mixed pesticides in chrysanthemum. This study provides a new approach for rapid detection of multiple hazardous substances in flowering and herbal plants.
Collapse
Affiliation(s)
- Zhilei Zhao
- School of Quality and Technical Supervision, Hebei University, Baoding 071002, China
| | - Mingshuo Cao
- School of Quality and Technical Supervision, Hebei University, Baoding 071002, China
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China.
| | - Dizhe Wei
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China.
| | - Xiangyang Li
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residue in Agricultural Product, College of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China
| | - Meng Wang
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China.
| | - Wenlei Zhai
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China.
| |
Collapse
|
3
|
Qin N, Liu J, Li F, Liu J. Recent Advances in Aptasensors for Rapid Pesticide Residues Detection. Crit Rev Anal Chem 2023; 54:3592-3613. [PMID: 37708008 DOI: 10.1080/10408347.2023.2257795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Pesticides are applied widely to increase agricultural output and quality, however, this practice results in residual issues that not only harm the environment but also put people and animals' lives and health at risk. As a result, it is critical to find pesticide residues in a variety of sources, including crops, water supplies, and soil. Aptamers are more flexible in their synthesis and modification, have a high level of specificity, are inexpensive, and have good stability compared to conventional detection methods. They have therefore attracted a lot of interest in the industry. This study reviews the most recent aptasensor advancements in the detection of pesticide residues. Firstly, aptamers specifically binding to many pesticides are summarized. Secondly, the combination of aptasensors with colorimetric, fluorescent, surface enhanced Raman spectroscopy (SERS), resonance Light Scattering (RLS), chemiluminescence (CL), electrochemical, and electrochemiluminescence (ECL) technologies are systematically introduced, and their advantages and disadvantages are expounded. Importantly, the aptasensors for the detection of various pesticides (organochlorine, organophosphorus, neonicotinoids, carbamates, and pyrethroids) that have been developed so far are systematically analyzed and discussed. Finally, the furture prospects and challenges of the aptasensors are highlighted. It is expected to offer suggestions for the later creation of novel, highly effective and sensitive aptasensors for the detection of pesticide residues.
Collapse
Affiliation(s)
- Na Qin
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin, China
| | - Jinfeng Liu
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fengyun Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingbo Liu
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin, China
| |
Collapse
|
4
|
Luo S, Peng R, Wang Y, Liu X, Ren J, Li W, Xiong Y, Yi S, Wen Q. Enzyme-targeted near-infrared fluorescent probe for organophosphorus pesticide residue detection. Anal Bioanal Chem 2023; 415:4849-4859. [PMID: 37433954 DOI: 10.1007/s00216-023-04801-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 07/13/2023]
Abstract
Pesticide residues significantly affect food safety and harm human health. In this work, a series of near-infrared fluorescent probes were designed and developed by acylating the hydroxyl group of the hemicyanine skeleton with a quenching moiety for monitoring the presence of organophosphorus pesticides in food and live cells. The carboxylic ester bond on the probe was hydrolyzed catalytically in the presence of carboxylesterase and thereby the fluorophore was released with near-infrared emission. Notably, the proposed probe 1 exhibited excellent sensitivity against organophosphorus based on the carboxylesterase inhibition mechanism and the detection limit for isocarbophos achieved 0.1734 μg/L in the fresh vegetable sample. More importantly, probe 1 allowed for situ visualization of organophosphorus in live cells and bacteria, meaning great potential for tracking the organophosphorus in biological systems. Consequently, this study presents a promising strategy for tracking pesticide residues in food and biological systems.
Collapse
Affiliation(s)
- Shan Luo
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, People's Republic of China
| | - Ruichen Peng
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, People's Republic of China
| | - Ying Wang
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, People's Republic of China
| | - Xianjun Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Jiali Ren
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, People's Republic of China
| | - Wang Li
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, People's Republic of China
| | - Ying Xiong
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, People's Republic of China
| | - Sili Yi
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua, 418000, People's Republic of China.
| | - Qian Wen
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, People's Republic of China.
- Hunan Provincial Key Laboratory of Food Safety Monitoring and Early Warning, Hunan Institute Food Quality Supervision Inspection and Research, Changsha, 410004, People's Republic of China.
| |
Collapse
|
5
|
Tang Y, Zhan X, Zheng J, Xie Z, Zhu S, Wu Y. Facile colorimetric smartphone-based biosensor for rapid detection of organophosphorus pesticides residues in environment using the aptamer-enhanced oxidase activity of octahedral Ag 2O particles. Anal Chim Acta 2023; 1264:341325. [PMID: 37230725 DOI: 10.1016/j.aca.2023.341325] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/11/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023]
Abstract
The long-term and excessive use of organophosphorus pesticides (OPs) leads to hazardous residues in the environment, which threatens human health to a considerable extent. Colorimetric methods can quickly and readily identify pesticide residue, but they still have various challenges in accuracy and stability. Herein, a smartphone-assisted and non-enzymatic colorimetric biosensor was constructed for rapid monitoring of multiple OPs based on the enhanced effect of aptamer on the catalytic ability of octahedral Ag2O. It was demonstrated that the aptamer sequence could enhance the affinity of colloidal Ag2O to chromogenic substrates, and accelerate the generation of oxygen radicals such as superoxide radical (·O2-) and singlet oxygen (1O2) from dissolved oxygen, thereby significantly increasing the oxidase activity of octahedral Ag2O. The color change of the solution can be easily converted to the corresponding RGB values by a smartphone for quantitative and rapid detection of multiple OPs. Hence, the smartphone-based and visual biosensor of multiple OPs was acquired with limit of detection of 10 μg L-1, 28 μg L-1 and 40 μg L-1 for isocarbophos, profenofos and omethoate, respectively. The colorimetric biosensor also exhibited good recoveries in several environmental and biological samples, showing that it may have broad application prospects for detecting OPs residues.
Collapse
Affiliation(s)
- Yue Tang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, China; Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang, 550025, China
| | - Xiangqiang Zhan
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang, 550025, China
| | - Jia Zheng
- Wuliangye Yibin Co., Ltd, Yibin, 644000, Sichuan Province, China
| | - Zhengmin Xie
- Wuliangye Yibin Co., Ltd, Yibin, 644000, Sichuan Province, China
| | - Shuangju Zhu
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang, 550025, China
| | - Yuangen Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, China; Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
6
|
G-quadruplex-deficient precursor hairpin probes for ultra-low background dual-mode detection of miRNAs. Talanta 2023; 253:123954. [PMID: 36162188 DOI: 10.1016/j.talanta.2022.123954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 12/13/2022]
Abstract
Design of oligonucleotide probe-based isothermal amplification with the ability to identify miRNA biomarkers is crucial for molecular diagnostics. Herein, we engineered a miRNA-21 responsive G-quadruplex-deficient precursor hairpin probe (PHP) to achieve dual-mode detection of fluorescent signal and colorimetric signal. Due to lack of complete G-quadruplex sequence, PHP becomes shorter in length, lower background signal and less interference. Based on the polymerase-driven amplification mechanism, in the presence of miRNAs, two simultaneous amplification reaction processes will occur in PHP: miRNA-based amplification process and endogenous amplification process along the 3' end. Due to the positional difference between the starting points of the two amplification processes, the orderly and efficient occurrence of the two amplification processes can be achieved. Based on an interesting concept, PHP can achieve high detection performance with only simple amplification cycles. In such a way, the detection limits for fluorescence and colorimetry were 2.93 fM and 8.81 fM, which would cover most of clinical qualitative and quantitative needs. Thus, the accurate quantitative and visual miRNA detection technology based on PHP is beneficial to carry out extensive disease screening and treatment monitoring in various complex occasions.
Collapse
|
7
|
SERS- and absorbance-based catalytic assay for determination of isocarbophos using aptamer-modified FeMOF nanozyme and in situ generated silver nanoparticles. Mikrochim Acta 2022; 190:4. [PMID: 36469128 DOI: 10.1007/s00604-022-05549-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/23/2022] [Indexed: 12/12/2022]
Abstract
A new Fe metal-organic framework-loaded liquid crystal 4-octoxybenzoic acid (FeMOF@OCTB) nanosol was synthesized using 1,3,5-phthalic acid, ferrous sulfate, and OCTB as precursors. The FeMOF@OCTB exhibits good stability and strong catalytic effect for the polyethylene glycol 400-Ag (I) indicator reaction, which was evaluated rapidly by the slope procedure. The generated silver nanoparticles have a strong surface-enhanced Raman scattering (SERS) effect and a surface plasmon resonance absorption (Abs) peak at 420 nm. This new bimodal nanosilver indicator reaction was coupled with the isocarbophos (IPS)-aptamer (Apt) reaction. A FeMOF@OCTB nanocatalytic amplified-SERS/Abs bimodal Apt assay for IPS was established. The SERS assay can detect IPS in the concentration range 0.02-1.2 nM, with a detection limit of 0.010 nM. It has been applied to the determination of IPS in rice samples. The relative standard deviation was 4.4-5.8%, and the recovery was 97.7-104%. An Ag nanosol plasmon SERS/Abs dimode aptamer assay was fabricated for trace isocarbophos, based on highly catalysis MOF@OCTB nanoenzyme.
Collapse
|
8
|
Ning Q, Chen Q, Huang Y, Wang Y, Wang Y, Liu Z. Development of a Hg2+-Stabilized Double-Stranded DNA Probe for Low-Cost Visual Detection of Glutathione in Food Based on G-Quadruplex/hemin DNAzymes. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822120103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Kosman J, Żukowski K, Csáki A, Fritzsche W, Juskowiak B. Sequence Effect on the Activity of DNAzyme with Covalently Attached Hemin and Their Potential Bioanalytical Application. SENSORS (BASEL, SWITZERLAND) 2022; 22:500. [PMID: 35062461 PMCID: PMC8780643 DOI: 10.3390/s22020500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
In this work we investigated the effect of a DNA oligonucleotide sequence on the activity of a DNAzyme with covalently attached hemin. For this purpose, we synthesized seven DNA-hemin conjugates. All DNA-hemin conjugates as well as DNA/hemin complexes were characterized using circular dichroism, determination of melting temperatures and pKa of hemin. We observed that hemin conjugation in most cases led to the formation of parallel G-quadruplexes in the presence of potassium and increased thermal stability of all studied systems. Although the activity of DNA-hemin conjugates depended on the sequence used, the highest activity was observed for the DNA-hemin conjugate based on a human telomeric sequence. We used this DNAzyme for development of "sandwich" assay for detection of DNA sequence. For this assay, we used electric chip which could conduct electricity after silver deposition catalyzed by DNAzyme. This method was proved to be selective towards DNA oligonucleotides with mismatches and could be used for the detection of the target. To prove the versatility of our DNAzyme probe we also performed experiments with streptavidin-coated microplates. Our research proved that DNAzyme with covalently attached hemin can be used successfully in the development of heterogeneous assays.
Collapse
Affiliation(s)
- Joanna Kosman
- Department of Bioanalytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland; (K.Ż.); (B.J.)
| | - Krzysztof Żukowski
- Department of Bioanalytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland; (K.Ż.); (B.J.)
| | - Andrea Csáki
- Leibniz Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07745 Jena, Germany; (A.C.); (W.F.)
| | - Wolfgang Fritzsche
- Leibniz Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07745 Jena, Germany; (A.C.); (W.F.)
| | - Bernard Juskowiak
- Department of Bioanalytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland; (K.Ż.); (B.J.)
| |
Collapse
|
10
|
Radhakrishnan K, Kumar PS. Target-receptive structural switching of ssDNA as selective and sensitive biosensor for subsequent detection of toxic Pb 2+ and organophosphorus pesticide. CHEMOSPHERE 2022; 287:132163. [PMID: 34509014 DOI: 10.1016/j.chemosphere.2021.132163] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/23/2021] [Accepted: 09/02/2021] [Indexed: 05/23/2023]
Abstract
A structural switching in Single-stranded DNA (ssDNA) fluorescence biosensor for quick turn-on/off detection of Pb2+ ions and pesticide was reported. The design strategy of Hex-labelled ssDNA consists of two types of aptamer probe, G-rich base pair sequence forms G-quadruplex confirmation with Pb2+ ions. While other part of base pair sequence exhibits affinity to fold isocarbophos pesticide. MoS2 nanosheets were identified as quick quencher of Hex fluorescence intensity via Vander-Waals interaction and its significance was compared with other nanomaterials. This sensing mechanism proposes a specific affinity of GA-rich ssDNA with Pb2+ to form G-quadruplex via G-Pb2+-G sequences. Consequently, ssDNA relived from MoS2 nanosheets to restore the fluorescence intensity (turn-on). Subsequent addition of pesticide shows stronger affinity towards unfolded aptamer probe to form a random coil like structure. This causes Hex-labelled 5' end closer to the G-quadruplex connected at the 3' end of ssDNA resulting in a remarkable fluorescence quenching (turn-off) owing to PET process. Moreover, the sensing probe (Hex-labelled GA-rich ssDNA) was recycled by introducing acetylcholinesterase enzyme and thiocoline into the reaction mixture. The detection limits of Pb2+ and isocarbophos pesticide was estimated to be 0.6 nM and 0.018 μg/L respectively. Moreover, this study reveals a high sensitivity and selectivity towards target molecules in environmental samples.
Collapse
Affiliation(s)
- K Radhakrishnan
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India.
| |
Collapse
|
11
|
Design an aptamer-based sensitive lateral flow biosensor for rapid determination of isocarbophos pesticide in foods. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108208] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Bhattu M, Verma M, Kathuria D. Recent advancements in the detection of organophosphate pesticides: a review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4390-4428. [PMID: 34486591 DOI: 10.1039/d1ay01186c] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Organophosphorus pesticides (OPPs) are generally utilized for the protection of crops from pests. Because the use of OPPs in various agricultural operations has expanded dramatically, precise monitoring of their concentration levels has become the critical issue, which will help in the protection of ecological systems and food supply. However, the World Health Organization (WHO) has classified them as extremely dangerous chemical compounds. Taking their immense use and toxicity into consideration, the development of easy, rapid and highly sensitive techniques is necessary. Despite the fact that there are numerous conventional ways for detecting OPPs, the development of portable sensors is required to make routine analysis considerably more convenient. Some of these advanced techniques include colorimetric sensors, fluorescence sensors, molecular imprinted polymer-based sensors, and surface plasmon resonance-based sensors. This review article specifically focuses on the colorimetric, fluorescence and electrochemical sensors. In this article, the sensing strategies of these developed sensors, analytical conditions and their respective limit of detection are compiled.
Collapse
Affiliation(s)
- Monika Bhattu
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Gharuan, Punjab 140413, India.
| | - Meenakshi Verma
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Gharuan, Punjab 140413, India.
| | - Deepika Kathuria
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Gharuan, Punjab 140413, India.
| |
Collapse
|
13
|
Nana L, Ruiyi L, Qinsheng W, Yongqiang Y, Xiulan S, Guangli W, Zaijun L. Colorimetric detection of chlorpyrifos in peach based on cobalt-graphene nanohybrid with excellent oxidase-like activity and reusability. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125752. [PMID: 34088207 DOI: 10.1016/j.jhazmat.2021.125752] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/10/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Cobalt nanocrystal has been widely used as nano-enzyme for sensing and catalysis due to its high stability and low cost, but poor catalytic activity limits its applications in bioanalysis. The study reports one strategy for synthesis of cobalt-graphene nanohybrid. Histidine-functionalized graphene quantum dot (His-GQD) was bound to graphene sheet via π-π stacking and then combined with cobalt ions in the presence of cetyltrimethylammonium chloride to form stable complex and finally reduced under nitrogen to obtain Co-His-GQD-G. The as-synthesized nanohybrid offers well-defined three-dimensional structure and quasi-superparamagnetism. The cobalt nanoparticles were well dispersed on graphene sheets. The unique structure improves oxidase-like activity of Co-His-GQD-G. Further, Co-His-GQD-G was used as the nanozyme for colorimetric detection of chlorpyrifos. Co-His-GQD-G catalyzes oxidization of 3,3',5,5'-tetramethylbenzidine into blue product. Thiocholine produced by hydrolysis of acetylthiocholine under catalysis of acetylcholinesterase inhibits catalytic activity of Co-His-GQD-G and leads to a reduced oxidization rate. Chlorpyrifos inhibits activity of acetylcholinesterase and brings an enhanced absorbance of blue product. The absorbance at 652 nm linearly increases with increasing chlorpyrifos concentration in the range of 2-20 ng mL-1 with detection limit of 0.57 ng mL-1 (S/N = 3). The method was successfully applied in determination of chlorpyrifos in peach by preparing Co-His-GQD-G magnetic gel sheet.
Collapse
Affiliation(s)
- Li Nana
- School of Chemical and Material Engineering, School of Pharmaceutical Science and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li Ruiyi
- School of Chemical and Material Engineering, School of Pharmaceutical Science and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wang Qinsheng
- National Graphene Products Quality Supervision and Inspection Center (Jiangsu), Jiangsu Province Special Equipment Safety Supervision Inspection Institute·Branch of Wuxi, Wuxi 214174, China
| | - Yang Yongqiang
- National Graphene Products Quality Supervision and Inspection Center (Jiangsu), Jiangsu Province Special Equipment Safety Supervision Inspection Institute·Branch of Wuxi, Wuxi 214174, China
| | - Sun Xiulan
- School of Chemical and Material Engineering, School of Pharmaceutical Science and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wang Guangli
- School of Chemical and Material Engineering, School of Pharmaceutical Science and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li Zaijun
- School of Chemical and Material Engineering, School of Pharmaceutical Science and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
14
|
Tang Y, Huang X, Wang X, Wang C, Tao H, Wu Y. G-quadruplex DNAzyme as peroxidase mimetic in a colorimetric biosensor for ultrasensitive and selective detection of trace tetracyclines in foods. Food Chem 2021; 366:130560. [PMID: 34284183 DOI: 10.1016/j.foodchem.2021.130560] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/27/2021] [Accepted: 06/28/2021] [Indexed: 01/03/2023]
Abstract
The colorimetric method can determine the initial results even by the naked eyes, but its main challenge for antibiotics detection in food at present is the relatively low sensitivity. Herein, an ultrasensitive colorimetric biosensor based on G-quadruplex DNAzyme was firstly proposed for the rapid detection of trace tetracycline antibiotics like tetracycline, oxytetracycline, chlortetracycline and doxycycline. DNAzyme composed of hemin and G-quadruplex has peroxidase-like activity, and tetracyclines can combine with hemin to form a stable complex and reduce catalytic activity, making the color of solution changes from yellow to green. The limits of detection (LOD) of the proposed colorimetric biosensor for tetracyclines is determined as low as 3.1 nM, which is lower than most of the other colorimetric methods for antibiotics detection. Moreover, the average recovery range of tetracyclines in actual samples is from 89% to 99%, indicating that such strategy may has bright application prospects for tetracyclines detection in foods.
Collapse
Affiliation(s)
- Yue Tang
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xiaohuan Huang
- Comprehensive Technology Center of Guiyang Customs District, Qianlingshan Road 268, Guanshanhu District, Guiyang 550081, China
| | - Xueli Wang
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Huaxi District, Guiyang 550025, China
| | - Chunxiao Wang
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Huaxi District, Guiyang 550025, China
| | - Han Tao
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yuangen Wu
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Huaxi District, Guiyang 550025, China..
| |
Collapse
|
15
|
Pan C, Qiu J, Wang L, Yan Z, Huang W, Zhang D, Zhan X, Shen G. Colorimetric Aptasensor for Testosterone Detection Based on Aggregation of Gold Nanoparticles Induced by Cationic Surfactant. Aust J Chem 2021. [DOI: 10.1071/ch20237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This paper proposes a colorimetric aptasensor for the detection of testosterone (TES) in environmental water, using TES-specific aptamer (apT5) as a sensing probe, gold nanoparticles (AuNPs) as indicator, and hexadecyltrimethylammonium bromide (CTAB) as inducer, respectively. Based on competition between TES and CTAB for apT5, the aptamer can form an aptamer–TES complex, leaving CTAB free to aggregate AuNPs in the presence of TES. Dispersed and aggregated AuNPs have different absorption wavelengths and the signal of absorption intensity is associated with the concentration of TES, so TES can be detected quantitatively based on the signal absorption intensity. This sensitive aptasensor for TES detection has a wide linear range (R=0.998) from 1.91–800nM and a limit of detection (LOD) of 1.91nM. In addition, this aptasensor has high selectivity over some interferents. The method detects TES in tap water samples with recoveries in the range of 98.9–102.6% (RSD ≤ 7.35%). This biosensor presents a good and potential application to rapidly detect TES in actual environmental water samples.
Collapse
|
16
|
Wang J, Tao H, Lu T, Wu Y. Adsorption enhanced the oxidase-mimicking catalytic activity of octahedral-shape Mn 3O 4 nanoparticles as a novel colorimetric chemosensor for ultrasensitive and selective detection of arsenic. J Colloid Interface Sci 2020; 584:114-124. [PMID: 33069011 DOI: 10.1016/j.jcis.2020.09.107] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/19/2020] [Accepted: 09/27/2020] [Indexed: 02/03/2023]
Abstract
Several researches have reported that Mn3O4 nanoparticles (NPs) could be used as adsorbent to remove arsenic from aqueous solution. However, we found that Mn3O4 NPs can not only adsorb arsenic, but also enhance the catalytic activity of Mn3O4 NPS, which enable us to establish a new method for the determination of arsenic. Herein, the adsorption of arsenic changes surface morphology of octahedral Mn3O4 NPs and further release Mn2+ to generate sufficient active sites, which enhances their oxidase-mimicking catalytic activity. Consequently, the solution changes to yellow and displays a characteristic absorption peak at 450 nm. This property enables us to construct a novel colorimetric chemosensor for arsenic detection. The limit of detection (LOD) of such colorimetric chemosensor for arsenic detection was determined as 1.32 μg⋅L-1, which is lower than the threshold recommended by WHO. The chemosensor allows arsenic to be determined visually at the concentrations as low as 10 μg⋅L-1, and displays excellent selectivity against other metal ions. Moreover, the chemosensor was successfully validated by analyzing several actual environmental and biological samples, indicating the excellent prospect of octahedral Mn3O4 NPs in the application of arsenic detection and removal.
Collapse
Affiliation(s)
- Jiajia Wang
- School of Liquor and Food Engineering, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Han Tao
- School of Liquor and Food Engineering, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Tingting Lu
- School of Liquor and Food Engineering, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Yuangen Wu
- School of Liquor and Food Engineering, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China; Key Laboratory of Wuliangye-flavor Liquor Solid-state Fermentation, China National Light Industry, Yibin 644000, China.
| |
Collapse
|