1
|
Abrahamsson V, Henderson BL, Friedman A, Gross J, Prothmann J, Davila AF, Williams AJ, Lin Y, Kanik I, Zhong F. Supercritical CO 2 and Subcritical H 2O Analysis Instrument: Automated Lipid Analysis for In Situ Planetary Life Detection. Anal Chem 2024; 96:13389-13397. [PMID: 39120043 DOI: 10.1021/acs.analchem.4c00474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The search for extraterrestrial extant or extinct life in our Solar System will require highly capable instrumentation and methods for detecting low concentrations of biosignatures. This paper introduces the Supercritical CO2 and Subcritical H2O Analysis (SCHAN) instrument, a portable and automated system that integrates supercritical fluid extraction (SFE), supercritical fluid chromatography (SFC), and subcritical water extraction coupled with liquid chromatography. The instrument is compact and weighs 6.3 kg, making it suitable for spaceflight missions to planetary bodies. Traditional techniques, such as gas chromatography-mass spectrometry (MS), face challenges with involatile and thermally labile analytes, necessitating derivatization. The SCHAN instrument, however, eliminates the need for derivatization and cosolvents by utilizing neat supercritical CO2 with water as an additive. This SFE-SFC-MS method gives efficient lipid biosignature separations with median detection limits of 10 pg/g (ppt) for fatty acids and 50 pg/g (ppt) for sterols. Several free fatty acids and cholesterol were among the detected peaks in biologically lean samples from the Atacama Desert, demonstrating the instrument's potential for in situ life detection missions. The SCHAN instrument addresses the challenges of conventional systems, offering a compact, portable, and spaceflight-compatible tool for the analysis of organics for future astrobiology-focused missions.
Collapse
Affiliation(s)
- Victor Abrahamsson
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena ,California 91109-8001, United States
| | - Bryana L Henderson
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena ,California 91109-8001, United States
| | - Adam Friedman
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena ,California 91109-8001, United States
| | - Johannes Gross
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena ,California 91109-8001, United States
| | - Jens Prothmann
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena ,California 91109-8001, United States
| | - Alfonso F Davila
- NASA Ames Research Center, Moffett Field ,California 94035-1000, United States
| | - Amy J Williams
- University of Florida, Gainesville ,Florida 32611-7011, United States
| | - Ying Lin
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena ,California 91109-8001, United States
| | - Isik Kanik
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena ,California 91109-8001, United States
| | - Fang Zhong
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena ,California 91109-8001, United States
| |
Collapse
|
2
|
Hofstetter RK, Schulig L, Bethmann J, Grimm M, Sager M, Aude P, Keßler R, Kim S, Weitschies W, Link A. Supercritical fluid extraction-supercritical fluid chromatography of saliva: Single-quadrupole mass spectrometry monitoring of caffeine for gastric emptying studies †. J Sep Sci 2021; 44:3700-3716. [PMID: 34355502 DOI: 10.1002/jssc.202100443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 11/06/2022]
Abstract
Saliva is an attractive sampling matrix for measuring various endogenous and exogeneous substances but requires sample treatment prior to chromatographic analysis. Exploiting supercritical CO2 for both extraction and chromatography simplifies sample preparation, reduces organic solvent consumption, and minimizes exposure to potentially infectious samples, but has not yet been applied to oral fluid. Here, we demonstrate the feasibility and benefits of online supercritical fluid extraction coupled to supercritical fluid chromatography and single-quadrupole mass spectrometry for monitoring the model salivary tracer caffeine. A comparison of 13 C- and 32 S-labeled internal standards with external standard calibration confirmed the superiority of stable isotope-labeled caffeine over nonanalogous internal standards. As proof of concept, the validated method was applied to saliva from a magnetic resonance imaging study of gastric emptying. After administration of 35 mg caffeine via ice capsule, salivary levels correlated with magnetic resonance imaging data, corroborating caffeine's usefulness as tracer of gastric emptying (R2 = 0.945). In contrast to off-line methods, online quantification required only minute amounts of organic solvents and a single manual operation prior to online bioanalysis of saliva, thus demonstrating the usefulness of CO2 -based extraction and separation techniques for potentially infective biomatrices.
Collapse
Affiliation(s)
- Robert K Hofstetter
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Lukas Schulig
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Jonas Bethmann
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Michael Grimm
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Maximilian Sager
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Philipp Aude
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Rebecca Keßler
- Department of Diagnostic Radiology and Neuroradiology, University Hospital Greifswald, Greifswald, Germany
| | - Simon Kim
- Department of Trauma, Reconstructive Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany.,Leibniz Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany
| | - Werner Weitschies
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Andreas Link
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| |
Collapse
|
3
|
Abrahamsson V, Henderson BL, Herman J, Zhong F, Lin Y, Kanik I, Nixon CA. Extraction and Separation of Chiral Amino Acids for Life Detection on Ocean Worlds Without Using Organic Solvents or Derivatization. ASTROBIOLOGY 2021; 21:575-586. [PMID: 33533680 DOI: 10.1089/ast.2020.2298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In situ instrumentation that can detect amino acids at parts-per-billion concentration levels and distinguish an enantiomeric excess of either d- or l-amino acids is vital for future robotic life-detection missions to promising targets in our solar system. In this article, a novel chiral amino acid analysis method is described, which reduces the risk of organic contamination and spurious signals from by-products by avoiding organic solvents and organic additives. Online solid-phase extraction, chiral liquid chromatography, and mass spectrometry were used for automated analysis of amino acids from solid and aqueous environmental samples. Carbonated water (pH ∼3, ∼5 wt % CO2 achieved at 6 MPa) was used as the extraction solvent for solid samples at 150°C and as the mobile phase at ambient temperature for chiral chromatographic separation. Of 18 enantiomeric amino acids, 5 enantiomeric pairs were separated with a chromatographic resolution >1.5 and 12 pairs with a resolution >0.7. The median lower limit of detection of amino acids was 2.5 μg/L, with the lowest experimentally verified as low as 0.25 μg/L. Samples from a geyser site (Great Fountain Geyser) and a geothermal spring site (Lemon Spring) in Yellowstone National Park were analyzed to demonstrate the viability of the method for future in situ missions to Ocean Worlds.
Collapse
Affiliation(s)
- Victor Abrahamsson
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Bryana L Henderson
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Julia Herman
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire, USA
| | - Fang Zhong
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Ying Lin
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Isik Kanik
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Icy Worlds, NASA Astrobiology Institute, Pasadena, California, USA
| | - Conor A Nixon
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| |
Collapse
|
4
|
Si‐Hung L, Bamba T. A review of retention mechanism studies for packed column supercritical fluid chromatography. ANALYTICAL SCIENCE ADVANCES 2021; 2:47-67. [PMID: 38715740 PMCID: PMC10989630 DOI: 10.1002/ansa.202000144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 06/13/2024]
Abstract
The packed column supercritical fluid chromatography has risen as a promising alternative separation technique to the conventional liquid chromatography and gas chromatography. Although the packed column supercritical fluid chromatography has many advantages compared to other chromatographic techniques, its separation mechanism is not fully understood due to the complex combination effects of many chromatographic parameters on separation quality and the lacking of global strategies for studying separation mechanisms. This review aims to provide recent information regarding the chromatographic behaviors and the effects of the parameters on the separation, discuss the results, and point out the remaining bottlenecks in the packed column supercritical fluid chromatography retention mechanism studies.
Collapse
Affiliation(s)
- Le Si‐Hung
- Division of Metabolomics, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| |
Collapse
|