1
|
Xie T, Li Y, Zhang M, Wang L, Hu Y, Yin K, Fan S, Wu H. Aggregation-induced emission activity of sensor TBM-C1 hybrid of methoxy-triphenylamine (OMe-TPA) and dicyanovinyl for cyanide detection in aqueous THF: Mechanistic insights and potential applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 312:124058. [PMID: 38387411 DOI: 10.1016/j.saa.2024.124058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
A series fluorescent probes (TBM-Cx (x = 1, 4, 8)) were designed based on embedding various alkoxy chains on the electron donor of triphenylamine (TPA)-based dicyanovinyl (MT) compound with an electron-deficient benzothiadiazole (BTD) for sensitive, selective, and visualizing detection of cyanide in aqueous solution. Due to the nucleophilic addition of CN-, the intramolecular charge transfer (ICT) of these probes was inhibited by the destroyed conjugated structure, exhibiting excellent "turn-on" fluorescence response toward cyanide anion (CN-) in tetrahydrofuran (THF). However, the alkoxy chains with different lengths embedded in TPA not only enhance the sensitivity and solubility, but also regulate the emission behavior from ICT to aggregation-induced emission (AIE) characteristics. The binding mechanism and AIE sensing performances between the probes and CN- have been investigated and compared in THF/water mixture by spectral tools and theoretical calculations. The results showed that the ICT-based TBM-C1 probe with methoxy chain showed significantly turn-on fluorescence response to CN- as low as 0.077 μM in THF/water solution at high water fraction (90 %). Due to the AIE sensing process, TBM-C1 was successfully employed to determine CN- in food and water samples, image CN- in living cells and BALB/c mice, and prepare test kits for visualizing cyanide.
Collapse
Affiliation(s)
- Tian Xie
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui 236037, PR China
| | - Yuanyuan Li
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui 236037, PR China
| | - Mengjie Zhang
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui 236037, PR China
| | - Li Wang
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui 236037, PR China
| | - Yingchu Hu
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui 236037, PR China
| | - Kun Yin
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui 236037, PR China
| | - Suhua Fan
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui 236037, PR China.
| | - Hai Wu
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui 236037, PR China.
| |
Collapse
|
2
|
Nauman A, Khaliq HS, Choi JC, Lee JW, Kim HR. Topologically Engineered Strain Redistribution in Elastomeric Substrates for Dually Tunable Anisotropic Plasmomechanical Responses. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6337-6347. [PMID: 38285501 DOI: 10.1021/acsami.3c13818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
The prompt visual response is considered to be a highly intuitive tenet among sensors. Therefore, plasmomechanical strain sensors, which exhibit dynamic structural color changes, have recently been developed by using mechanical stimulus-based elastomeric substrates for wearable sensors. However, the reported plasmomechanical strain sensors either lack directional sensitivity or require complex signal processing and device design strategies to ensure anisotropic optical responses. To the best of our knowledge, there have been no reports on utilizing anisotropic mechanical substrates to obtain directional optical responses. Herein, we propose an anisotropic plasmomechanical sensor to distinguish between the applied force direction and the force magnitude. We employ a simple strain-engineered topological elastomer to mechanically transform closely packed metallic nanoparticles (NPs) into anisotropic directional rearrangements depending on the applied force direction. The proposed structure consists of a heterogeneous-modulus elastomer that exhibits a highly direction-dependent Poisson effect owing to the periodically line-patterned local strain redistribution occurring due to the same magnitude of applied external force. Consequently, the reorientation of the self-assembled gold (Au)-NP array manifests dual anisotropy, i.e., force- and polarization-direction-dependent plasmonic coupling. The cost-effectiveness and simple design of our proposed heterogeneous-modulus platform pave the way for numerous optical applications based on dynamic transformation and topological inhomogeneities.
Collapse
Affiliation(s)
- Asad Nauman
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hafiz Saad Khaliq
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jun-Chan Choi
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jae-Won Lee
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hak-Rin Kim
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
- School of Electronics Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
3
|
Zhao L, Wei Y, Fu H, Yang R, Zhao Q, Zhang H, Cai W. Solid chip-based detection of trace morphine in solutions via portable surface-enhanced Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:122977. [PMID: 37329830 DOI: 10.1016/j.saa.2023.122977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/19/2023]
Abstract
The accurate, sensitive and portable detection of morphine is important to handle judicial cases, but remains to be a great challenge. In this work, a flexible route is presented for the accurate identification and efficient detection of trace morphine in solutions based on surface-enhanced Raman spectroscopy (SERS) and a solid substrate/chip. A gold-coated jagged silicon nanoarray (Au-JSiNA) is designed and prepared via Si-based polystyrene colloidal template-reactive ion etching and sputtering deposition of Au. Such Au-JSiNA has three-dimensional nanostructure with good structural uniformity, high SERS activity and hydrophobic surface. Adopting this Au-JSiNA as SERS chip, trace morphine in solutions could be detected and identified in both dropping and soaking ways, and the limit of detection is below 10-4 mg/mL. Importantly, such chip is especially suitable for the detection of trace morphine in aqueous solutions and even domestic sewage. The good SERS performance is attributed to the high-density nanotips and nanogaps on this chip as well as its hydrophobic surface. Additionally, the appropriate surface modification of this Au-JSiNA chip with 3-mercapto-1-propanol or 3-mercaptopropionic acid/1-(3-dimethylaminopropyl)-3-ethylcarbodiimide can further increase its SERS performances to morphine. This work provides a facile route and practical solid chip for SERS detection of trace morphine in solutions, which is significant to develop the portable and reliable instruments for on-site analysis of drugs in solutions.
Collapse
Affiliation(s)
- Lingyi Zhao
- School of Criminal Investigation, People's Public Security University of China, Beijing 100038, PR China; Beijing Municipal Key Laboratory of Forensic Science, Beijing 100038, PR China
| | - Yi Wei
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Hao Fu
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Ruiqin Yang
- School of Criminal Investigation, People's Public Security University of China, Beijing 100038, PR China; Beijing Municipal Key Laboratory of Forensic Science, Beijing 100038, PR China.
| | - Qian Zhao
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Hongwen Zhang
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Weiping Cai
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China
| |
Collapse
|
4
|
Rajamanikandan R, Sasikumar K, Kosame S, Ju H. Optical Sensing of Toxic Cyanide Anions Using Noble Metal Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13020290. [PMID: 36678042 PMCID: PMC9863761 DOI: 10.3390/nano13020290] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 06/12/2023]
Abstract
Water toxicity, one of the major concerns for ecosystems and the health of humanity, is usually attributed to inorganic anions-induced contamination. Particularly, cyanide ions are considered one of the most harmful elements required to be monitored in water. The need for cyanide sensing and monitoring has tempted the development of sensing technologies without highly sophisticated instruments or highly skilled operations for the objective of in-situ monitoring. Recent decades have witnessed the growth of noble metal nanomaterials-based sensors for detecting cyanide ions quantitatively as nanoscience and nanotechnologies advance to allow nanoscale-inherent physicochemical properties to be exploited for sensing performance. Particularly, noble metal nanostructure e-based optical sensors have permitted cyanide ions of nanomolar levels, or even lower, to be detectable. This capability lends itself to analytical application in the quantitative detection of harmful elements in environmental water samples. This review covers the noble metal nanomaterials-based sensors for cyanide ions detection developed in a variety of approaches, such as those based on colorimetry, fluorescence, Rayleigh scattering (RS), and surface-enhanced Raman scattering (SERS). Additionally, major challenges associated with these nano-platforms are also addressed, while future perspectives are given with directions towards resolving these issues.
Collapse
|
5
|
Xie S, Wang H, Li N, Liu Y, Wu J, Xu Y, Xie J. A gold coating nanoporous anodized alumina oxide membrane as the substrate for rapid surface enhanced Raman spectroscopy detection of conjugated cyanide in fingertip blood. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Duan C, Li J, Zhang Y, Ding K, Geng X, Guan Y. Portable instruments for on-site analysis of environmental samples. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Yang B, Wang Y, Jin S, Guo S, Park E, Shin JY, Zhang W, Jung YM. Ag-decorated polymer chip for the determination of the respective concentrations of TTD and Hg 2+ by surface-enhanced raman scattering. Analyst 2022; 147:597-603. [DOI: 10.1039/d1an02292j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A “hotspot”-rich Ag-nanoparticle-decorated three-dimensional polymer substrate was fabricated, exhibiting an excellent surface-enhanced Raman scattering (SERS) activity.
Collapse
Affiliation(s)
- Bo Yang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, P.R. China
| | - Ye Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, P.R. China
| | - Sila Jin
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chunchon 24341, Korea
| | - Shuang Guo
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chunchon 24341, Korea
| | - Eungyeong Park
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chunchon 24341, Korea
| | - Jin Y. Shin
- Department of Chemistry & Environmental Science, Medgar Evers College-The City University of New York, Brooklyn, NY, 11225, USA
| | - Weiyu Zhang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, P.R. China
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chunchon 24341, Korea
| |
Collapse
|
8
|
Wallace GQ, Delignat-Lavaud B, Zhao X, Trudeau LÉ, Masson JF. A blueprint for performing SERS measurements in tissue with plasmonic nanofibers. J Chem Phys 2020; 153:124702. [PMID: 33003723 DOI: 10.1063/5.0024467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Plasmonic nanostructures have found increasing utility due to the increased popularity that surface-enhanced Raman scattering (SERS) has achieved in recent years. SERS has been incorporated into an ever-growing list of applications, with bioanalytical and physiological analyses having emerged as two of the most popular. Thus far, the transition from SERS studies of cultured cells to SERS studies involving tissue has been gradual and limited. In most cases, SERS measurements in more intact tissue have involved nanoparticles distributed throughout the tissue or localized to specific regions via external functionalization. Performing highly localized measurements without the need for global nanoparticle uptake or specialized surface modifications would be advantageous to the expansion of SERS measurements in tissue. To this end, this work provides critical insight with supporting experimental evidence into performing SERS measurements with nanosensors inserted in tissues. We address two critical steps that are otherwise underappreciated when other approaches to performing SERS measurements in tissue are used. Specifically, we demonstrate two mechanical routes for controlled positioning and inserting the nanosensors into the tissue, and we discuss two means of focusing on the nanosensors both before and after they are inserted into the tissue. By examining the various combinations of these steps, we provide a blueprint for performing SERS measurements with nanosensors inserted in tissue. This blueprint could prove useful for the general development of SERS as a tool for bioanalytical and physiological studies and for more specialized techniques such as SERS-optophysiology.
Collapse
Affiliation(s)
- Gregory Q Wallace
- Département de Chimie, Centre Québécois des Matériaux Fonctionnels (CQMF), and Regroupement Québécois des Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Benoît Delignat-Lavaud
- Neuroscience Research Group (GRSNC), Département de Pharmacologie et Physiologie, Département de Neurosciences, Faculté de Médecine, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
| | - Xingjuan Zhao
- Département de Chimie, Centre Québécois des Matériaux Fonctionnels (CQMF), and Regroupement Québécois des Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Louis-Éric Trudeau
- Neuroscience Research Group (GRSNC), Département de Pharmacologie et Physiologie, Département de Neurosciences, Faculté de Médecine, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
| | - Jean-François Masson
- Département de Chimie, Centre Québécois des Matériaux Fonctionnels (CQMF), and Regroupement Québécois des Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| |
Collapse
|