1
|
Mobed A, Abdi B, Masoumi S, Mikaeili M, Shaterian E, Shaterian H, Kazemi ES, Shirafkan M. Advances in human reproductive biomarkers. Clin Chim Acta 2024; 552:117668. [PMID: 37992849 DOI: 10.1016/j.cca.2023.117668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Reproductive biomarkers are important regulators in women, especially during pregnancy and childbirth. Because of their essential role in women's health, the discovery and quantification of reproductive biomarkers is of great clinical importance. Nowadays, there are many detection strategies to detect these biomarkers, including VEGF, human chorionic gonadotropin (hCG), etc. Consider the limitations and problems of conventional diagnostic methods, new methods are being developed, one of the most important being methods based on nanotechnology. This review includes a review of methods for diagnosing reproductive biomarkers, ranging from mainstream to nanotechnology-based methods. The bulk of this article is an in-depth introduction to the latest advances in biosensor and nanosensor research for the detection and quantitative identification of reproductive biomarkers.
Collapse
Affiliation(s)
- Ahmad Mobed
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Bita Abdi
- Department of Obstetrics and Gynecology, Alzahra Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajjad Masoumi
- Deparment of Medical Biotechnology, National institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammad Mikaeili
- The faculty of medical sciences of the Islamic Azad University, Tabriz Branch, Iran
| | - Elham Shaterian
- The faculty of medical sciences of the Islamic Azad University, Tabriz Branch, Iran
| | - Hamed Shaterian
- The faculty of medical sciences of the Islamic Azad University, Tabriz Branch, Iran
| | - Esmat Sadat Kazemi
- Department of Obstetrics and Gynecology, Alzahra Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mahdiye Shirafkan
- Division of Pharmacology and toxicology Department of Basic Sciences, Faculty of Veterinary Medicine University of Tabriz, Tabriz, Iran
| |
Collapse
|
2
|
Nourizad A, Golmohammadi S, Aghanejad A, Tohidkia MR. Recent trends in aptamer-based nanobiosensors for detection of vascular endothelial growth factors (VEGFs) biomarker: A review. ENVIRONMENTAL RESEARCH 2023; 236:116726. [PMID: 37495062 DOI: 10.1016/j.envres.2023.116726] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023]
Abstract
Vascular endothelial growth factor (VEGF) is a remarkable cytokine that plays an important role in regulating vascular formation during the angiogenesis process. Therefore, real-time detection and quantification of VEGF is essential for clinical diagnosis and treatment due to its overexpression in various tumors. Among various sensing strategies, the aptamer-based sensors in combination with biological molecules improve the detection ability VEGFs. Aptamers are suitable biological recognition agents for the preparation of sensitive and reproducible aptasensors (Apt-sensors) due to their low immunogenicity, simple and straightforward chemical modification, and high resistance to denaturation. Here, a summary of the strategies for immobilization of aptamers (e.g., direct or self-assembled monolayer (SAM) attachment, etc.) on different types of electrodes was provided. Moreover, we discussed nanoparticle deposition techniques and surface modification methods used for signal amplification in the detection of VEGF. Furthermore, we are investigating various types of optical and electrochemical Apt-sensors used to improve sensor characterization in the detection of VEGF biomarkers.
Collapse
Affiliation(s)
- Abolfazl Nourizad
- Research Center for Pharmaceutical Nanotechnology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Electronics, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
| | - Saeed Golmohammadi
- Department of Electronics, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Nuclear Medicine, Faculty of Medicine, Imam Reza General Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Reza Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
He X, Xu J, Wang X, Ge C, Li S, Wang L, Xu Y. Enrichment and detection of VEGF 165 in blood samples on a microfluidic chip integrated with multifunctional units. LAB ON A CHIP 2023; 23:2469-2476. [PMID: 37092607 DOI: 10.1039/d3lc00225j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this paper, a multifunctional microfluidic chip integrated with a centrifugal separation zone, aqueous two-phase system (ATPS) mixing zone and enrichment detection zone was proposed and fabricated. An automatic and efficient separation and quantitative analysis method for vascular endothelial growth factor 165 (VEGF165) in whole blood samples was established with the designed microfluidic chip. A blood sample was divided into blood cells and plasma in the centrifugation zone. In the ATPS mixing zone, plasma was mixed with PEG/KH2PO4 aqueous two-phase solution containing Apt-Au NP nanoprobes. In the enrichment detection zone, the mixture was separated on CN140 modified with a ZnO NP-anti VEGF165 nanostructure. The VEGF165 captured by Apt-Au NPs was distributed in the PEG phase, concentrated at the front of CN140 and combined with anti-VEGF165 to form a sandwich structure. The sensitive detection of VEGF165 was achieved through fluorescence resonance energy transfer between rhodamine B and Au NPs on the nanoprobe. Under the optimized rotation program, capillary and centrifugal forces propelled the fluid in the whole process of pretreatment and detection. The detection linear range was between 1 pg mL-1 and 50 ng mL-1, the detection limit of VEGF165 in blood was 0.22 pg mL-1 and the enrichment efficiency was 983. It was illustrated that a convenient and reliable way for detection of tumor markers based on the multifunctional microfluidic chip was provided and it has a potential value for early screening and prognosis of clinical cancer.
Collapse
Affiliation(s)
- Xinyu He
- Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Shapingba, Chongqing, 400044 PR China.
- School of Chemistry and Chemical Engineering, Chongqing University, Shapingba, Chongqing, 400044 PR China
- International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Shapingba, Chongqing, 400044 PR China
| | - Junyan Xu
- Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Shapingba, Chongqing, 400044 PR China.
- School of Chemistry and Chemical Engineering, Chongqing University, Shapingba, Chongqing, 400044 PR China
- International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Shapingba, Chongqing, 400044 PR China
| | - Xiaoli Wang
- Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Shapingba, Chongqing, 400044 PR China.
- School of Optoelectronic Engineering, Chongqing University, Shapingba, Chongqing, 400044 PR China
- International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Shapingba, Chongqing, 400044 PR China
| | - Chuang Ge
- Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030 PR China
| | - Shunbo Li
- Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Shapingba, Chongqing, 400044 PR China.
- School of Optoelectronic Engineering, Chongqing University, Shapingba, Chongqing, 400044 PR China
- International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Shapingba, Chongqing, 400044 PR China
| | - Li Wang
- Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Shapingba, Chongqing, 400044 PR China.
- School of Optoelectronic Engineering, Chongqing University, Shapingba, Chongqing, 400044 PR China
- International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Shapingba, Chongqing, 400044 PR China
| | - Yi Xu
- Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Shapingba, Chongqing, 400044 PR China.
- School of Optoelectronic Engineering, Chongqing University, Shapingba, Chongqing, 400044 PR China
- International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Shapingba, Chongqing, 400044 PR China
| |
Collapse
|
4
|
Li X, Zhou Y, Li L, Wang T, Wang B, Che R, Zhai Y, Zhang J, Li W. Metal selenide nanomaterials for biomedical applications. Colloids Surf B Biointerfaces 2023; 225:113220. [PMID: 36889108 DOI: 10.1016/j.colsurfb.2023.113220] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023]
Abstract
Metal selenide nanomaterials have received enormous attention as they possess diverse compositions, microstructures, and properties. The combination of selenium with various metallic elements gives the metal selenide nanomaterials distinctive optoelectronic and magnetic properties, such as strong near-infrared absorption, excellent imaging properties, good stability, and long in vivo circulation. This makes metal selenide nanomaterials advantageous and promising for biomedical applications. This paper summarizes the research progress in the last five years in the controlled synthesis of metal selenide nanomaterials in different dimensions and with different compositions and structures. Then we discuss how surface modification and functionalization strategies are well-suited for biomedical fields, including tumor therapy, biosensing, and antibacterial biological applications. The future trends and issues of metal selenide nanomaterials in the biomedical field are also discussed.
Collapse
Affiliation(s)
- Xiangyang Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Yue Zhou
- Department of Colorectal & Anal Surgery, the First Hospital of Jilin University, Changchun 130031, China
| | - Leijiao Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China; Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China.
| | - Ting Wang
- Department of Colorectal & Anal Surgery, the First Hospital of Jilin University, Changchun 130031, China
| | - Bao Wang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Rere Che
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Yutong Zhai
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Jiantao Zhang
- Department of Colorectal & Anal Surgery, the First Hospital of Jilin University, Changchun 130031, China.
| | - Wenliang Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China; Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin 132013, China.
| |
Collapse
|
5
|
Pourmadadi M, Rajabzadeh-Khosroshahi M, Saeidi Tabar F, Ajalli N, Samadi A, Yazdani M, Yazdian F, Rahdar A, Díez-Pascual AM. Two-Dimensional Graphitic Carbon Nitride (g-C 3N 4) Nanosheets and Their Derivatives for Diagnosis and Detection Applications. J Funct Biomater 2022; 13:204. [PMID: 36412845 PMCID: PMC9680252 DOI: 10.3390/jfb13040204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 12/14/2022] Open
Abstract
The early diagnosis of certain fatal diseases is vital for preventing severe consequences and contributes to a more effective treatment. Despite numerous conventional methods to realize this goal, employing nanobiosensors is a novel approach that provides a fast and precise detection. Recently, nanomaterials have been widely applied as biosensors with distinctive features. Graphite phase carbon nitride (g-C3N4) is a two-dimensional (2D) carbon-based nanostructure that has received attention in biosensing. Biocompatibility, biodegradability, semiconductivity, high photoluminescence yield, low-cost synthesis, easy production process, antimicrobial activity, and high stability are prominent properties that have rendered g-C3N4 a promising candidate to be used in electrochemical, optical, and other kinds of biosensors. This review presents the g-C3N4 unique features, synthesis methods, and g-C3N4-based nanomaterials. In addition, recent relevant studies on using g-C3N4 in biosensors in regard to improving treatment pathways are reviewed.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14179-35840, Iran
| | | | - Fatemeh Saeidi Tabar
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14179-35840, Iran
| | - Narges Ajalli
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14179-35840, Iran
| | - Amirmasoud Samadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14179-35840, Iran
- Department of Chemical and Biomolecular Engineering, 6000 Interdisciplinary Science & Engineering Building (ISEB), Irvine, CA 92617, USA
| | - Mahsa Yazdani
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14179-35840, Iran
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran 14179-35840, Iran
| | - Abbas Rahdar
- Department of Physics, Faculty of science, University of Zabol, Zabol 538-98615, Iran
| | - Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
6
|
Tang YY, Chen JS, Liu XP, Mao CJ, Jin BK. An ultrasensitive photoelectrochemical aptasensor based on ZnIn2S4/CdSe heterojunction for the detection of microcystine-LR. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
7
|
Electrochemiluminescence aptasensor for vascular endothelial growth factor 165 detection based on Ru(bpy)32+/Au nanoparticles film modified electrode and double signal amplification. Bioelectrochemistry 2022; 146:108151. [DOI: 10.1016/j.bioelechem.2022.108151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/20/2022]
|
8
|
Zhang YW, Cao Y, Mao CJ, Jiang D, Zhu W. An Iron(III)-Based Metal-Organic Gel-Catalyzed Dual Electrochemiluminescence System for Cytosensing and In Situ Evaluation of the VEGF 165 Subtype. Anal Chem 2022; 94:4095-4102. [PMID: 35196001 DOI: 10.1021/acs.analchem.2c00032] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The recent surge of interest in metal-organic gels (MOGs) has emerged for their soft porous structure, large surface area, and abundant active metal sites, making them a promising candidate for building catalyst matrices. In this work, facilely synthesized Fe(III)-organic gel was directly used as a robust electrode matrix. Detailed studies illustrated that their Fe(III) centers can speed up the electro-oxidation/reduction of the H2O2 coreactant to produce reactive oxygen species for enhancing a potential-resolved dual electrochemiluminescence (ECL) emission. Among them, the anodic signal of luminol varied with the cell concentration based on the impedance ECL mechanism, while the cathodic signal of CdS quantum dots traced the VEGF165 subtype at cell surface by specific aptamer recognition. Based on this, a ratiometric strategy was proposed for accurate cytosensing by eliminating environmental interference. Moreover, by cooperating these two signals, a novel strategy was developed for direct evaluation of the VEGF165 subtype, further realizing rapid drug screening and subtype assessment on different cell lines. This work not only opens up the promising application of MOGs as an effective catalyst matrix but also develops reliable cell assays and protein subtype identification for clinical diagnosis and research.
Collapse
Affiliation(s)
- Yi-Wen Zhang
- School of the Environment, School of Chemistry and Chemical Engineering, State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, PR China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Yue Cao
- School of the Environment, School of Chemistry and Chemical Engineering, State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, PR China
| | - Chang-Jie Mao
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Dechen Jiang
- School of the Environment, School of Chemistry and Chemical Engineering, State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, PR China
| | - Wenlei Zhu
- School of the Environment, School of Chemistry and Chemical Engineering, State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, PR China
| |
Collapse
|
9
|
Li Z, Gu Y, Ge S, Mao Y, Gu Y, Cao X, Lu D. An aptamer-based SERS–LFA biosensor with multiple channels for the ultrasensitive simultaneous detection of serum VEGF and osteopontin in cervical cancer patients. NEW J CHEM 2022. [DOI: 10.1039/d2nj03567g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this work, a novel surface-enhanced Raman scattering and lateral flow assay (SERS–LFA) biosensor with multiple channels based on an aptamer has been proposed.
Collapse
Affiliation(s)
- Zhiyue Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
- Department of Obstetrics and Gynecology, College of Clinical Medicine, Yangzhou University, Yangzhou, 225001, P. R. China
- The First Clinical College, Dalian Medical University, Dalian, 116011, P. R. China
| | - Yingyan Gu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
- Department of Obstetrics and Gynecology, College of Clinical Medicine, Yangzhou University, Yangzhou, 225001, P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, P. R. China
| | - Shengjie Ge
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, P. R. China
- Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
| | - Yu Mao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, P. R. China
- Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
| | - Yuexing Gu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, P. R. China
- Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
| | - Xiaowei Cao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, P. R. China
- Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
| | - Dan Lu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
- Department of Obstetrics and Gynecology, College of Clinical Medicine, Yangzhou University, Yangzhou, 225001, P. R. China
- The First Clinical College, Dalian Medical University, Dalian, 116011, P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, P. R. China
| |
Collapse
|
10
|
Gao Z, Ren F, Yang G, Feng G, Wu L, Huang G, Chen Q. A highly sensitive electrochemical aptasensor for vascular endothelial growth factor detection based on toehold-mediated strand displacement reaction. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4934-4940. [PMID: 34612218 DOI: 10.1039/d1ay01263k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
An electrochemical aptasensor with high sensitivity, specificity, and good intra-day reproducibility is reported to meet the detection needs of vascular endothelial growth factor (VEGF). The toehold-mediated strand displacement recycling amplification and VEGF aptamer are integrated in the biosensor. The probe A is hybridized with the VEGF aptamer to form the probe A-aptamer complex. When VEGF is introduced, the aptamer specifically binds with VEGF, and probe A can be liberated. Then, the free probe A captures the toehold region of the Hp1, leading the exposure of the toehold region on the other end of Hp1. Similarly, Hp2 and Hp3 are also immobilized on the surface of the electrode; thus, the methylene blue labelled on Hp2 and Hp3 causes the current response. With the signal transduction mechanism, the expression level of VEGF can be detected quantitatively. With a series of optimizations of sensor parameters, high sensitivity and specificity of the VEGF detection sensor can be achieved with a detection limit as low as 10 pg mL-1. This significant performance has good intra-day reproducibility, and it can be applied to human biological samples such as serum, urine, and saliva to detect the VEGF content.
Collapse
Affiliation(s)
- Zhong Gao
- Department of Otorhinolaryngology Head and Neck Surgery, Shenzhen Fuyong People's Hospital, Shenzhen, Guangdong, 518103, China.
| | - Fangling Ren
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, 442008, China.
| | - Guangyi Yang
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518101, China.
| | - Guangjun Feng
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518101, China.
| | - Lun Wu
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, 442008, China.
| | - Guiling Huang
- Department of Orthopaedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China.
- Yangtze University, Health Science Center, Jingzhou, Hubei, 434025, China
| | - Qinhua Chen
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518101, China.
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, 442008, China.
| |
Collapse
|
11
|
Wu L, Wang Y, Xu X, Liu Y, Lin B, Zhang M, Zhang J, Wan S, Yang C, Tan W. Aptamer-Based Detection of Circulating Targets for Precision Medicine. Chem Rev 2021; 121:12035-12105. [PMID: 33667075 DOI: 10.1021/acs.chemrev.0c01140] [Citation(s) in RCA: 254] [Impact Index Per Article: 84.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The past decade has witnessed ongoing progress in precision medicine to improve human health. As an emerging diagnostic technique, liquid biopsy can provide real-time, comprehensive, dynamic physiological and pathological information in a noninvasive manner, opening a new window for precision medicine. Liquid biopsy depends on the sensitive and reliable detection of circulating targets (e.g., cells, extracellular vesicles, proteins, microRNAs) from body fluids, the performance of which is largely governed by recognition ligands. Aptamers are single-stranded functional oligonucleotides, capable of folding into unique tertiary structures to bind to their targets with superior specificity and affinity. Their mature evolution procedure, facile modification, and affinity regulation, as well as versatile structural design and engineering, make aptamers ideal recognition ligands for liquid biopsy. In this review, we present a broad overview of aptamer-based liquid biopsy techniques for precision medicine. We begin with recent advances in aptamer selection, followed by a summary of state-of-the-art strategies for multivalent aptamer assembly and aptamer interface modification. We will further describe aptamer-based micro-/nanoisolation platforms, aptamer-enabled release methods, and aptamer-assisted signal amplification and detection strategies. Finally, we present our perspectives regarding the opportunities and challenges of aptamer-based liquid biopsy for precision medicine.
Collapse
Affiliation(s)
- Lingling Wu
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yidi Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xing Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yilong Liu
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bingqian Lin
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Mingxia Zhang
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jialu Zhang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shuang Wan
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Weihong Tan
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China.,The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
12
|
Chouhan RS, Jerman I, Heath D, Bohm S, Gandhi S, Sadhu V, Baker S, Horvat M. Emerging tri‐s‐triazine‐based graphitic carbon nitride: A potential signal‐transducing nanostructured material for sensor applications. NANO SELECT 2020. [DOI: 10.1002/nano.202000228] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
| | - Ivan Jerman
- National Institute of Chemistry Ljubljana Slovenia
| | - David Heath
- Department of Environmental Sciences Jožef Stefan Institute Ljubljana Slovenia
| | - Sivasambu Bohm
- Royal Society Industry Fellow Molecular Science Research Hub Imperial College London London UK
| | - Sonu Gandhi
- DBT‐National Institute of Animal Biotechnology (DBT‐NIAB) Hyderabad Telangana India
| | - Veera Sadhu
- School of Physical Sciences Kakatiya Institute of Technology & Science (KITS) Warangal Telangana India
| | - Syed Baker
- Department of Microbiology Prof. V.F. Voino‐Yasenetsky Krasnoyarsk State Medical University Krasnoyarsk Siberia Russian Federation
| | - Milena Horvat
- Department of Environmental Sciences Jožef Stefan Institute Ljubljana Slovenia
| |
Collapse
|
13
|
Zou R, Teng X, Lin Y, Lu C. Graphitic carbon nitride-based nanocomposites electrochemiluminescence systems and their applications in biosensors. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116054] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|