1
|
Görs PE, Ayala-Cabrera JF, Meckelmann SW. Unraveling the Double Bond Position of Fatty Acids by GC-MS Using Electron Capture APCI and In-Source Fragmentation Patterns. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2538-2546. [PMID: 37751542 DOI: 10.1021/jasms.3c00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
The position of double bonds in unsaturated fatty acids is strongly connected to their biological effects, but their analytical characterization is still challenging. However, the ionization of unsaturated fatty acids by a GC-APCI leads to regiospecific in-source fragment ions, which can be used to identify the double bond position. The fragment ions are oxidized species that occur mostly at the double bond closest to the carboxylic acid group. This effect can be further promoted by using benzaldehyde as a gas-phase reactant. This allows the identification of the Δ-notation of the fatty acid, and based on additional information such as m/z and retention time, it is possible to annotate the corresponding fatty acid. The developed method also enables the quantification of fatty acids in one step with high selectivity and sensitivity. Moreover, rare fatty acids can be identified in suspected target approaches that are often not available as standards. This was demonstrated by analyzing fish oil samples that provide a complex mixture of highly unsaturated fatty acids and by identifying rare fatty acids such as hexadecatetraenoic acid (FA 16:4 Δ6).
Collapse
Affiliation(s)
- Paul E Görs
- Applied Analytical Chemistry, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Juan F Ayala-Cabrera
- Applied Analytical Chemistry, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
- Department of Analytical Chemistry, University of the Basque Country, 48080 Leioa, Biscay, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PiE), University of the Basque Country (UPV/EHU), 48620 Plentzia, Biscay, Basque Country, Spain
| | - Sven W Meckelmann
- Applied Analytical Chemistry, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| |
Collapse
|
2
|
Cerrato A, Capriotti AL, Cavaliere C, Montone CM, Piovesana S, Laganà A. Novel Aza-Paternò-Büchi Reaction Allows Pinpointing Carbon-Carbon Double Bonds in Unsaturated Lipids by Higher Collisional Dissociation. Anal Chem 2022; 94:13117-13125. [PMID: 36121000 PMCID: PMC9523615 DOI: 10.1021/acs.analchem.2c02549] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The evaluation of double bond positions in fatty acyl
chains has
always been of great concern given their significance in the chemical
and biochemical role of lipids. Despite being the foremost technique
for lipidomics, it is difficult in practice to obtain identification
beyond the fatty acyl level by the sole high-resolution mass spectrometry.
Paternò–Büchi reactions of fatty acids (FAs)
with ketones have been successfully proposed for pinpointing double
bonds in FAs in combination with the collision-induced fragmentation
technique. In the present paper, an aza-Paternò–Büchi
(aPB) reaction of lipids with 6-azauracil (6-AU) was proposed for
the first time for the determination of carbon–carbon double
bonds in fatty acyl chains using higher collisional dissociation in
the negative ion mode. The method was optimized using free FA and
phospholipid analytical standards and compared to the standard Paternò–Büchi
reaction with acetone. The introduction of the 6-AU moiety allowed
enhancing the ionization efficiency of the FA precursor and diagnostic
product ions, thanks to the presence of ionizable sites on the derivatizing
agent. Moreover, the aPB derivatization allowed the obtention of deprotonated
ions of phosphatidylcholines, thanks to an intramolecular methyl transfer
from the phosphocholine polar heads during ionization. The workflow
was finally applied for pinpointing carbon–carbon double bonds
in 77 polar lipids from an yeast (Saccharomyces cerevisiae) extract.
Collapse
Affiliation(s)
- Andrea Cerrato
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Anna Laura Capriotti
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Chiara Cavaliere
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Carmela Maria Montone
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Susy Piovesana
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Aldo Laganà
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| |
Collapse
|
3
|
Zhu Z, Li X, Tang C, Shen J, Liu J, Ye Y. A derivatization strategy for comprehensive identification of 2- and 3-hydroxyl fatty acids by LC-MS. Anal Chim Acta 2022; 1216:339981. [DOI: 10.1016/j.aca.2022.339981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/10/2022] [Accepted: 05/21/2022] [Indexed: 11/01/2022]
|
4
|
Heiles S. Advanced tandem mass spectrometry in metabolomics and lipidomics-methods and applications. Anal Bioanal Chem 2021; 413:5927-5948. [PMID: 34142202 PMCID: PMC8440309 DOI: 10.1007/s00216-021-03425-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022]
Abstract
Metabolomics and lipidomics are new drivers of the omics era as molecular signatures and selected analytes allow phenotypic characterization and serve as biomarkers, respectively. The growing capabilities of untargeted and targeted workflows, which primarily rely on mass spectrometric platforms, enable extensive charting or identification of bioactive metabolites and lipids. Structural annotation of these compounds is key in order to link specific molecular entities to defined biochemical functions or phenotypes. Tandem mass spectrometry (MS), first and foremost collision-induced dissociation (CID), is the method of choice to unveil structural details of metabolites and lipids. But CID fragment ions are often not sufficient to fully characterize analytes. Therefore, recent years have seen a surge in alternative tandem MS methodologies that aim to offer full structural characterization of metabolites and lipids. In this article, principles, capabilities, drawbacks, and first applications of these "advanced tandem mass spectrometry" strategies will be critically reviewed. This includes tandem MS methods that are based on electrons, photons, and ion/molecule, as well as ion/ion reactions, combining tandem MS with concepts from optical spectroscopy and making use of derivatization strategies. In the final sections of this review, the first applications of these methodologies in combination with liquid chromatography or mass spectrometry imaging are highlighted and future perspectives for research in metabolomics and lipidomics are discussed.
Collapse
Affiliation(s)
- Sven Heiles
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich Buff Ring 17, 35392, Giessen, Germany.
| |
Collapse
|
5
|
Helmer PO, Nordhorn ID, Korf A, Behrens A, Buchholz R, Zubeil F, Karst U, Hayen H. Complementing Matrix-Assisted Laser Desorption Ionization-Mass Spectrometry Imaging with Chromatography Data for Improved Assignment of Isobaric and Isomeric Phospholipids Utilizing Trapped Ion Mobility-Mass Spectrometry. Anal Chem 2021; 93:2135-2143. [PMID: 33416303 DOI: 10.1021/acs.analchem.0c03942] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Lipids, such for example the multifaceted category of glycerophospholipids (GP), play a major role in many biological processes. High-resolution mass spectrometry is able to identify these highly diverse lipid species in combination with fragmentation experiments (MS/MS) on the basis of the accurate m/z and fragmentation pattern. However, for the differentiation of isomeric lipids or isobaric interferences, more elaborate separation methods are required. Especially for imaging techniques, such as matrix-assisted laser desorption/ionization (MALDI)-MS imaging, the identification is often exclusively based on the accurate m/z. Fragmentation via MS/MS increases the confidence in lipid annotation in imaging approaches. However, this is sometimes not feasible due to insufficient sensitivity and significantly prolonged analysis time. The use of a separation dimension such as trapped ion mobility spectrometry (TIMS) after ionization strengthens the confidence of the identification based on the collision cross section (CCS). Since CCS libraries are limited, a tissue-specific database was initially generated using hydrophilic interaction liquid chromatography-TIMS-MS. Using this database, the identification of isomeric lipid classes as well as isobaric interferences in a lipid class was performed using a mouse spleen sample in a workflow described in this study. Besides a CCS-based identification as an additional identification criterion for GP in general, the focus was on the distinction of the isomeric GP classes phosphatidylglycerol and bis(monoacylglycero)phosphate, as well as the differentiation of possible isobaric interferences based on the formation of adducts by MALDI-TIMS-MS imaging on a molecular level.
Collapse
Affiliation(s)
- Patrick O Helmer
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, Münster 48149, Germany
| | - Ilona D Nordhorn
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, Münster 48149, Germany
| | - Ansgar Korf
- Bruker Daltonik GmbH, Fahrenheitstraße 4, Bremen 28359, Germany
| | - Arne Behrens
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, Münster 48149, Germany
| | - Rebecca Buchholz
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, Münster 48149, Germany
| | - Florian Zubeil
- Bruker Daltonik GmbH, Fahrenheitstraße 4, Bremen 28359, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, Münster 48149, Germany
| | - Heiko Hayen
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, Münster 48149, Germany
| |
Collapse
|
6
|
Wäldchen F, Mohr F, Wagner AH, Heiles S. Multifunctional Reactive MALDI Matrix Enabling High-Lateral Resolution Dual Polarity MS Imaging and Lipid C═C Position-Resolved MS 2 Imaging. Anal Chem 2020; 92:14130-14138. [PMID: 32924439 DOI: 10.1021/acs.analchem.0c03150] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Local lipid variations in tissues are readily revealed with mass spectrometry imaging (MSI) methods, and the resulting lipid distributions serve as bioanalytical signatures to reveal cell- or tissue-specific lipids. Comprehensive MSI lipid mapping requires measurements in both ion polarities. Additionally, structural lipid characterization is necessary to link the lipid structure to lipid function. Whereas some structural elements of lipids are readily derived from high-resolution mass spectrometry (MS) and tandem-MS (MSn), the localization of C═C double bonds (DBs) requires specialized fragmentation and/or functionalization methods. In this work, we identify a multifunctional matrix-assisted laser desorption/ionization (MALDI) matrix for spatially resolved lipidomics investigations that reacts with lipids in Paternò-Büchi (PB) reactions during laser irradiation facilitating DB-position assignment and allows dual-polarity high-resolution MALDI-MSI and MALDI MS2I studies. By screening 12 compounds for improved ionization efficiency in positive-/negative-ion mode and the functionalization yield compared to the previously introduced reactive MALDI matrix benzophenone, 2-benzoylpyridine (BzPy) is identified as the best candidate. The new matrix enables DB localization of authentic standards belonging to 12 lipid classes and helps to assign 133/58 lipid features in positive-/negative-ion mode from mouse cerebellum tissue. The analytical capabilities of BzPy as a multifunctional MALDI-MSI matrix are demonstrated by imaging endogenous and PB-functionalized lipids in mouse kidney sections with 7 μm lateral resolution in both ion modes. Tracking diagnostic lipid DB-position fragment ions in mouse pancreatic tissue with down to 10 μm pixel size allows us to identify the islets of Langerhans associated with lipid isomer upregulation and depletion.
Collapse
Affiliation(s)
- Fabian Wäldchen
- Institute of Inorganic and Analytical Chemistry, Analytical Chemistry, Justus Liebig University Giessen, Heinrich Buff Ring 17, 35392 Giessen, Germany
| | - Franziska Mohr
- Department of Cardiovascular Physiology, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Andreas H Wagner
- Department of Cardiovascular Physiology, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Sven Heiles
- Institute of Inorganic and Analytical Chemistry, Analytical Chemistry, Justus Liebig University Giessen, Heinrich Buff Ring 17, 35392 Giessen, Germany
| |
Collapse
|